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ABSTRACT Recent genomic studies have highlighted the important role of admixture in shaping genome-wide patterns of diversity. Past
admixture leaves a population genomic signature of linkage disequilibrium (LD), reflecting the mixing of parental chromosomes by segregation
and recombination. These patterns of LD can be used to infer the timing of admixture, but the results of inference can depend strongly on the
assumed demographic model. Here, we introduce a theoretical framework for modeling patterns of LD in a geographic contact zone where
two differentiated populations have come into contact and are mixing by diffusive local migration. Assuming that this secondary contact is
recent enough that genetic drift can be ignored, we derive expressions for the expected LD and admixture tract lengths across geographic
space as a function of the age of the contact zone and the dispersal distance of individuals. We develop an approach to infer age of contact
zones, using population genomic data from multiple spatially sampled populations by fitting our model to the decay of LD with
recombination distance. To demonstrate an application of our model, we use our approach to explore the fit of a geographic contact
zone model to three human genomic data sets from populations in Indonesia, Central Asia, and India and compare our results to
inference under different demographic models. We obtain substantially different results from those of the commonly used model of
panmictic admixture, highlighting the sensitivity of admixture timing results to the choice of demographic model.
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POPULATIONS frequently undergo periods of relative iso-
lation that are followed by secondary contact. During

isolation, the evolutionary processes of genetic drift, muta-
tion, and selection act to differentiate populations at many
markers throughout the genome. When these populations
come back into contact, the restoration of gene flow generates
admixed populations, which start as an assemblage of differen-
tiated parental genomes that are broken up every generation by
segregation and recombination between chromosomes.

Under this process, linked alleles of the same ancestry will
tend to be co-inherited until separated by recombination.
Because the parental populations are differentiated with

respect toeachother, this co-inheritance leads toanonrandom
association of alleles, referred to as linkage disequilibrium
(LD). This admixture-induced LD (or admixture LD) is the
resulting covariance between loci and initially extends over
a much larger genomic scale than LD does in either parental
population and is a signature of relatively recent admixture
(Cavalli-Sforza and Bodmer 1971; Chakraborty and Weiss
1988). One can also think of this signature as the persistence
of parental haplotypes in admixed populations that, rather
than beingmeasured directly, is measured as the extent of co-
occurrence along a chromosome of alleles that are diagnostic
of parental origin. Recombination acts every generation to
gradually break apart long tracts of ancestry into smaller
tracts, and so the association between nearby alleles lasts
many generations. The physical scale over which admixture
LD breaks down is determined by the timescale over which
parental populations have been interbreeding; the conser-
vation of many ancestral haplotypes over large physical dis-
tances would imply very recent admixture, whereas a longer
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history of admixture producesmany smaller parental tracts.We
assume that population differentiation within the parental pop-
ulations is weak relative to that between them and so consider
only admixture LD (and not mixture LD that is covariance be-
tween loci induced by substructure) in the focal populations.

Data from many (potentially weakly) differentiated
markers allow for the identification and quantification of
admixture in individuals (e.g., Pritchard et al. 2000) and
the inference of the ancestral origin of a given chromosomal
region (e.g., Falush et al. 2003; Price et al. 2009; Hellenthal
et al. 2014). The continued mixing of differentiated geno-
types, as described above, produces predictable population
genomic patterns that change through time, and these signals
can be used to not only detect past admixture in an extant
population, but also learn about the timing and history of
these admixture events (e.g., Harris and Nielsen 2013; Loh
et al. 2013; Hellenthal et al. 2014). Such inferences have
been used to reconstruct historical population movements,
highlighting the importance of admixture in shaping pat-
terns of diversity in human populations (Reich et al. 2009;
Patterson et al. 2012; Loh et al. 2013; Moorjani et al. 2013;
Hellenthal et al. 2014). These studies have utilized powerful
methods that first identify stretches of chromosome inherited
from a particular parental population [admixture tracts
(Gravel 2012; Hellenthal et al. 2014)] or measure the co-
variance, over spatial scales, of variants that are diagnostic
of parental populations [admixture LD (Patterson et al. 2012;
Loh et al. 2013)] and then infer the genetic scale over which
this measured coancestry decays. Commonly this is done by
assuming a model of admixture in which one isolated popu-
lation is formed by a single admixture event in time, with
subsequent random mating. Under this simple model, the
distribution of admixture tract lengths and the decay of ad-
mixture LD with respect to genetic distance are approxi-
mately exponential, with the rate parameter corresponding
to the time in generations since admixture. However, viola-
tions of the assumptions of the single-pulse model can result
in substantial departure between expected and observed
rates of decay of coancestry with respect to time.

Models incorporating multiple admixture times, or sus-
tained migration (Pool and Nielsen 2009; Gravel 2012;
Hellenthal et al. 2014; Liang and Nielsen 2014b), have been
built to address more complex admixture scenarios in single
populations. However, these do not incorporate the fact that
admixture often occurs in a geographic context—beginning
at a given point in time, then spreading across space. Most
current models treat each admixed population as an indepen-
dent event, not accounting for this spatial context, evenwhen
admixture in spatially distributed populations is potentially
attributable to a single historical event.

In this article we build an alternative model of diffusion of
ancestry across geography in time. Specifically, we consider
a scenario in which two populations spread back into contact,
generating a gradient of admixture across space with the
greatest variance in ancestry at the point of initial contact.
We refer to this mixture across space, where migration is

sustained throughboth time and space, as a contact zone. This
geographicmixing leads to departures from a simplemodel of
exponential decay of admixture LD as there is exchange of
migrants between neighboring populations with different
admixture proportions. We describe the expected covariance
in ancestry (ancestry LD) in contact zones, accounting for
migration incontinuous space.Byassuminga largepopulation
that is not affected by genetic drift, and therefore ignoring
coalescence, we are able to derive an analytic expression for
LD in contact zones. This model provides a framework to
simultaneously examine admixture patterns over a set of
geographically distributed populations and a potential geo-
graphic null model for studying historical movements of
populations. Inference under this model provides a means
to estimate both the time at which populations spread back
into contact and some measures of dispersal. We analyze
several potential human contact zones under our model
and show that simpler “point”models of admixture can infer
unreasonably recent admixture dates. In addition to human
admixture, LD has also been used to characterize hybrid
zones (e.g., Szymura and Barton 1986; Mallet et al. 1990;
Wang et al. 2011), and so the model presented here also
has applications in the study of such secondary contact be-
tween incipient species. This could potentially complement
earlier investigations of coancestry along hybrid zones in
the presence of selection (Barton 1979, 1983; Barton and
Bengtsson 1986).

Materials and Methods

Outline of neutral model

Weconsider twodifferentiatedpopulations alonga transect in
space, formerly separated by a barrier that completely pre-
vented migration (at position x ¼ 0) that was removed t

generations ago (Figure 1). We imagine the barrier as a phys-
ical obstruction to migration; however, in practice the two
previously isolated populations could come into contact
through a variety of means. We use a continuous-space limit
of randomly mating (Wright–Fisher) populations on a line,
made formal in, e.g., Nagylaki (1975) and Shiga (1980),
which can be described informally as follows.

Since time t, individuals have moved without restriction,
in such a way that the distribution of displacements be-
tween an ancestor and a descendant separated by t gener-
ations is Gaussian with mean zero and variance s2t: The
Gaussian assumption is appropriate since, over many gen-
erations, the sum of many steps under a finite-variance dis-
persal kernel will converge to a Gaussian distribution. This
forms a gradient of admixed populations across space,
whose degree of admixture depends on the time that has
passed and the distance to the point of initial contact. Over
time, genotypes of different ancestries diffuse across the
entire range, and recombination breaks down tracts of
continuous ancestry. We aim to describe this diffusion of
ancestry throughout time and space.
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To determine the typical degree of admixture at a location,
we follow the lineage of a sampled individual back through
time, tracing the spatial location of the ancestor of today’s
sample back to the initiation of secondary contact. The an-
cestral type of today’s sample is determined by the geo-
graphic position of its ancestor t generations ago: we say
that a sampled individual whose lineage falls to the left of
the barrier (i.e., whose ancestor t generations ago lived at
a location x, 0) is of ancestry A and is otherwise of ances-
try B. This represents the alleles belonging to ancestral
population A or B before the initiation of secondary contact.
We treat time and space as continuous variables, and the
time-reversible properties of Brownian motion allow us to
model the movement of lineages as a continuous Brownian
process. The framework we present here is explicitly de-
fined in a one-dimensional geographic transect, but also
applies, unchanged, in two dimensions due to the absence
of drift.

Behavior of a single locus

We start by describing the marginal profile of admixture
proportions. Suppose that we sample a randomly chosen
individual today from position ℓ relative to the center of the
contact zone and define A to be that individual’s ancestry at
a randomly chosen locus (i.e.,A is equal to B if their ancestor
at the time of secondary contact t generations ago lived to the
right of the barrier). Since we assume that the displacement
between parents and offspring is Gaussian with variance s2;

we can describe the movement of the lineage as a Brownian
motion, and so the probability thatA is of ancestry B is equal

to the probability that a Brownian motion that begins at ℓ is
to the right of zero after t generations; i.e.,

E½1BðAÞ� ¼
Z N

2ðℓ=s
ffiffi
t

p
Þ

1ffiffiffiffiffiffi
2p

p exp

 
2
x2

2

!
  dx ¼ F

�
ℓ

s
ffiffiffi
t

p
�
: (1)

Here 1BðAÞ is the indicator function:

1BðAÞ ¼
�
1 A  has  ancestry   B
0 A  has  ancestry   A:

In other words, the probability that an individual sampled at
geographic position ℓ inherits at a given locus from ancestral
population B is the probability that xt . 0; where xt is Gauss-
ian with mean ℓ and variance ts2: This is also the expected
frequency of ancestry B at position ℓ; t generations after con-
tact, and therefore provides an expectation of the cline in
ancestry proportion (Figure 1). Although it is convenient to
imagine the motion of a lineage as a Brownian motion in
continuous time, this expression also holds for discrete gen-
erations since the distribution of parent–offspring dispersal is
Gaussian with variance s2; and then the total displacement
across t generations is also Gaussian, with variance ts2.

Under this model, we expect the zone of significant admix-
ture,whereadmixtureLD isobservable, toextendoverdistance
�  2s ffiffiffi

t
p

in either direction from the center of the zone. There-
fore, to fit our model using the inference framework we de-
scribe below, we will need samples on this spatial scale. We
note that while this may be a good model for small t, the
prediction under this model that admixture proportions

Figure 1 A schematic of the model in space and time. In A and B, the black rectangle represents a barrier to dispersal that is removed at a time t

generations in the past, after which there is unrestricted gene flow. (A) Gene flow resumes between two initially isolated populations t generations ago,
with a dispersal kernel of variance s2: The expected cline in ancestry proportion is a function of time since initial contact, and the observed cline in the
present day (0 generations ago) is a function of t. (B) We follow backward in time the Brownian motion paths of two initially linked lineages,
represented here by two black circles located on a blue chromosome. The paths of the two lineages are identical until the first recombination event
between them at time t, after which they follow independent Brownian paths. The red cross indicates the position, relative to the center of the zone,
where the chromosome was sampled in the present day. In this example, both alleles are of ancestry B, since they are on the same side of the barrier to
dispersal at time t.
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homogenize as t becomes very large can be unrealistic as bar-
riers to intermixing may persist over time and therefore may
not be an appropriate model for very old contact zones.

Ancestry LD between linked loci

In our model, all chromosomes begin as unbroken tracts of
ancestry prior to initial contact. As time progresses, recombi-
nation between haplotypes of different ancestry breaks down
these associations. To model this effect, we consider two
linked loci separated by a recombination fraction r, on a single
chromosome sampled at geographic position ℓ; t generations
after secondary contact (see Figure 1 and legend). The ances-
tries of a sampled individual at these two loci are denotedA1

and A2; respectively. If there is no recombination between
these two loci, then both lineages trace the same path back in
time, and 1BðA1Þ ¼ 1BðA2Þ: The recombination fraction be-
tween the loci is the per generation probability of observing
a recombinant haplotype as the product of meiosis. For close
pairs of markers it may suffice to use the genetic distance
d in morgans that separates markers, but for more distant
markers we can use the probability of an observed recombina-
tion event, which is the probability of an odd number of recom-
bination events between focal loci, accounting for interference
whenpossible. Assuming no interference (i.e., a Poissonmodel),
the relationship between d and r is given by Haldane’s mapping
function, r ¼ ð12 e22dÞ=2 (Haldane 1919).

We measure ancestry LD as the covariance in ancestry
between the alleles at the two loci,

Covð1BðA1Þ;1BðA2ÞÞ

¼ E½1BðA1Þ1BðA2Þ�2E
�
1BðA1Þ

�
E
�
1BðA2Þ

�
:

(2)

SinceA1 andA2 have the same distribution, the second term
is simply E½1BðA1Þ�2; which by Equation 1 is Fðℓ=s ffiffiffi

t
p Þ2:

The first term of Equation 2 is the probability that bothA1

and A2 are of ancestry B, which we can compute by consid-
ering the joint distribution of the movement of the two line-
ages over the last t generations. At the time of sampling, and
until the first recombination event between the two loci, the
two lineages follow an identical path back through time. We
assume that after the first recombination event the two line-
ages never coalesce back onto the same chromosome and
therefore pursue independent Brownian paths for the re-
mainder of the t generations since secondary contact (Figure
1). This assumption ignores drift since secondary contact and
therefore does not account for the possibility of the two line-
ages coming back onto the same background to once again
assume identical paths. This is a reasonable assumption for
large populations and recent contact zones where the proba-
bility of coalescing back onto the same background is small, but
neglects some additional covariance in smaller populations.

This assumption of no drift will be good if
ffiffiffi
t

p
is much

smaller than the number of individuals falling in a circle (or
interval) of radius s, proportional to Wright’s neighborhood
size Ns (Wright 1946). This is because in one dimension,

assuming Gaussian dispersal, the number of generations that
two randomly moving lineages that start in the same place
spend within distance s of each other across t generations is
of order

ffiffiffi
t

p
; the chance that they coalesce each time they are

nearby is proportional to 1=Ns; and so the chance of coales-
cence is negligible if

ffiffiffi
t

p
=Ns � 1: Since coalescence is less

likely in two dimensions than in one, this gives a bound in
the two-dimensional case as well; for more discussion, see
Nagylaki (1978) and Barton et al. (2002).

To find an expression for covariance in ancestry, observe
that the random number of generations T since the most re-
cent recombination event between the two loci is geometri-
cally distributed; continuing with the continuous timemodel,
we can take T to be exponentially distributed with rate pa-
rameter r. Given that the most recent recombination along
this lineage occurred T generations ago, with T, t; the spa-
tial displacements of the two lineages from whichA1 andA2

derive at t generations in the past are distributed as a bivar-
iate Gaussian with covariance Ts2 and variance ts2; the
probability density of which we denote fTðx1; x2Þ:

The probability that both lineages are to the right of zero t
generations ago, and hence are both of ancestry B, is there-
fore given by

E
�
1BðA1Þ1BðA2Þ

�
¼ e2rtF

�
ℓ

s
ffiffiffi
t

p
�

þ
Z t

0
re2rt

Z N

2ℓ

Z N

2ℓ
ftðx1; x2Þ  dx1dx2   dt:

(3)

The first term of Equation 3 corresponds to the probability
that there has been no recombination for the last t gener-
ations, multiplied by the probability that the path of our
single ancestral lineage is on the right side of the barrier
when the barrier was removed. The second term integrates
the probability that two lineages that recombined t gener-
ations ago are both to the right of the barrier at time t, i.e.,
the bivariate Gaussian density integrated over the quadrant
x1 . 0 and x2 . 0; over all possible times of first recombina-
tion. Rescaling t so that u ¼ t=t; Equations 2 and 3 come
together to give

Cov½1BðA1Þ;1BðA2Þ� 

¼
Z 1

0
e2rut 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 u2

p exp

 
2

ℓ2

ts2ð1þ uÞ

!
  du

¼: Dðr; ℓ; t;sÞ:

(4)

To obtain this expression, we integrate by parts, make use
of the identity in Equation A3, and rescale (0, t) onto (0, 1)
(see Appendix A for more detail). We denote this covariance
as a function Dðr; ℓ; t;sÞ; which expresses the expected co-
variance in ancestries of two loci in a randomly sampled in-
dividual from a given geographic location (ℓ) as a function of
recombination fraction (r) between the loci, time since ad-
mixture (t), and rate of dispersal (s). In Appendix B we also
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develop analogous results for arbitrary migration schemes in
discretized space, for both continuous and discrete time.

These functional forms give us a way to relate observed
patternsof LD inadmixedpopulations to theparameters of the
demographic model generating admixture. We later use this
to develop an inference method to estimate these parameters
in a contact zone. Before doing this, we explore strategies to
obtain the full distribution of admixture block lengths in
a contact zone model.

Admixture block lengths

An extension to the above approach for describing admixture
LD between two loci is to consider how ancestry along the
chromosome is partitioned into unbroken genomic tracts of
ancestrydrawn fromoneparental population.This is anatural
way to think about coancestry in admixed populations (Fisher
1954; Barton 1983; Ungerer et al. 1998; Gravel 2012), and
the genome-wide distribution of ancestry tract length will
contain information about admixture and is a richer source
of information than pairwise LD alone.

We again examine a chromosome drawn at random at
geographic position ℓ; this time considering the probability
that between physical positions P andQ, separated by genetic
distance d, the chromosome inherits entirely from ancestry
B. As above, we assume that once linkage is broken by re-
combination, the lineages from which the products of recom-
bination are descended move independently of each other.
This again assumes that t is small relative to the timescale of
coalescence (genetic drift). Further, it ignores the correlation
structure imposed by the pedigree (Wakeley et al. 2012;
Liang and Nielsen 2014a), the impact of which we return
to in the Discussion.

We note that our measure of recombination rate d will
differ from the earlier definition of recombination fraction
(r) as we will be tracking all recombination events between
P and Q. We now assume that recombination events occur as
a Poisson process with rate d, which reflects genetic distance
on the genetic map between our two endpoint loci, and as-
sume no interference.

If there have been K recombination events that occurred
along the tract of the chromosome over the last t generations,
then this region has K þ 1 genetic ancestors from t genera-
tions ago. Denote the spatial locations at time t of these
ancestors X ¼ ðX1;⋯;XKþ1Þ: As our assumption of infinite
population size neglects coalescence, these ancestors are as-
sumed to be distinct. The segment contains only ancestry
from population B if all Xi . 0 (i.e., all K þ 1 ancestors lived
at locations to the right of 0 at time t; see Figure 2 for an
example of K= 3). We denote the probability of this segment
containing only ancestry from population B as

Udðt; ℓÞ ¼ E

"YK
i¼1

1BðAiÞ
#
; (5)

where, as before, Ai is B if Xi . 0: This expected value aver-
ages over both the number and timing of recombination

events and the locations of the ancestral lineages at time t

ago. We now outline one approach to obtain an expression
for Udðt; ℓÞ by conditioning on the number of recombination
events, and give a complementary approach in Appendix D.

Sincewe assume no coalescence, the branching order of the
ancestral lineages via recombination specifies a labeled tree
structure with K þ 1 tips, given K recombinations, meaning
that a modern individual at location ℓ has K þ 1 distinct ances-
tors from t generations ago. Since, looking backward in time,
each lineage moves as an independent Brownian motion once
it has split from the others, X has a ðK þ 1Þ-dimensional mul-
tivariate Gaussian distribution with mean ðℓ;⋯; ℓÞ and variance–
covariance matrix S. The entries Si; j are determined by the
amount of time that the lineages leading to tips i and j spend
in linkage. If we let ti; j be the time, in generations, from the
present to the recombination that separates tip i from tip
j, then Si; j ¼ s2ti; j; and the diagonal entries are Si;i ¼ s2t:

Conditioning on K ¼ k recombinations and S; the proba-
bility that all kþ 1 tips are of ancestry B is given by the in-
tegral of the kþ 1-dimensional Gaussian density over the
space for which all Xi . 0 :

Uðt; ℓjSÞ ¼
Z N

2ℓ
⋯
Z N

2ℓ

exp
�
2ð1=2ÞxTS21x

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞkjSj

q dx1⋯dxkþ1:

(6)

The above integrand is the density for themultivariate Gauss-
ian whose covariance matrix is determined by the timing and
ordering along the chromosome of recombination events. As
an example, Figure 2 presents the two different unlabeled
topologies that can be obtained for K ¼ 3: The topology of
Figure 2A would produce a multivariate Gaussian with co-
variance matrix

s2

2664
t t1 t1 t1
t1 t t2 t2
t1 t2 t t3
t1 t2 t3 t

3775
and the topology of Figure 2B would be represented by the
covariance matrix

s2

2664
t t2 t1 t1
t2 t t1 t1
t1 t1 t t3
t1 t1 t3 t

3775:

Obtaining the unconditioned value of Uðt; ℓÞ from the con-
ditioned version in Equation 6 requires averaging over possi-
ble trees; to do this we sum over possible tree topologies and
for each tree topology integrate over possible split times (i.e.,
t1; t2; and t3 in the case of the three-recombination trees
shown in Figure 2).

For a given unlabeled tree topology T ; we therefore need
to integrate Equation 6 over the possible split times of the
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tree. First note that we can reduce to the case of trees with
height 1 by scaling time. We define S9 ¼ S=ðs2tÞ so that by
Gaussian scaling, Uðt; ℓjSÞ ¼ Uð1; ℓ=ðs

ffiffiffi
t

p
ÞjS9Þ:

We then obtain the following term:

U


t; ℓ
��T � ¼ Z

t9
U
�
1;

ℓ
s
ffiffiffi
t

p
����S9�V�t91;⋯t9kþ1

	
dt91⋯dt9kþ1:

(7)

Here, Vðt91;⋯t9kþ1Þ is the probability of the branching
times given the topology. V accounts for the fact that the S

we integrate over represents a topology T and so the possible
entries of S are constrained by T : Thus, the set of possible
times, t9; over which we integrate depends on the tree topol-
ogy, and correspondingly, each topology has a probability
given k recombinations. [See Appendix C for a further de-
scription of t9 and Vðt9Þ.]

Finally, we sum across k and, for each k, all kþ 1-tipped
unlabeled topologies. Recalling that the probability of the
number of recombination events is Poisson distributed,

Udðt; ℓÞ ¼
XN
k¼0

ðdtÞke2dt

k!

X
T k

i 2T
k

Pr
�
T k

i

	
Ur

�
t; ℓ
���T k

i

	
; (8)

where PrðT k
i Þ is the probability of the ith unlabeled topology

given that there are kþ 1 tips [we describe the calculation of
PrðT k

i Þ in Appendix C]. We note that Equation 8 is a Wild sum
expansion for Udðt; ℓÞ (Etheridge 2000). We outline an ap-
proach using differential equations to obtain an equivalent
expression in Appendix D.

In practice, we can approximate this sum by conditioning
on k  * or fewer recombination events in t generations:

Uk*
d ðt; ℓÞ ¼ 1

Prðk# k*jdtÞ
Xk*
k¼0



dt
�ke2dt

k!

3
P

T k
i 2T

k

Pr
�
T k

i

	
Ur

�
t; ℓjT k

i

	
:

(9)

In the Results section below, we briefly explore the conver-
gence of this sum to distributions obtained by simulation.
Summing over the large number of topologies for large k  *
is computationally expensive, but terms in the sum can be
reused over some parameter values. Given reliable measure-
ments of block-length distributions from genomic data, the
above estimate of U provides a means by which timing and
migration in contact zones can be inferred (see Gravel 2012
for a recent application of such an approach). However, we
do not implement this strategy here, concentrating instead
on fitting models to admixture LD.

Simulations

We developed two classes of simulations to (1) evaluate the
accuracy of our analytic results and (2) explore the conse-
quences of realistic violations of our model that likely occur
under the specified biological process. Specifically, we are
concerned with the assumption that movement of alleles is
independent following recombination that follows from the
assumption of infinite population size as well as the assump-
tion of continuous time, rather than discrete generations.

Figure 2 Brownian motion paths of a tract of chromosome. As in Figure 1B, the paths along chromosomal fragments are identical until recombination
breaks the fragments up. Here, the position of each chromosome fragment at time t is shown. For the entire portion of chromosome to be of uniform
ancestry, all products of recombination must be on the same side of the barrier to dispersal at time t. In A and B, both tracts of chromosome have
experienced three recombination events at times t1; t2; and t3; but have different topologies due to the different orderings of the events along the
chromosome: ðt1; t2; t3Þ in A and ðt1; t3; t2Þ in B. This results in different covariance matrices for the positions of fragments, as described in the main text.
The yellow, blue, and green fragments in A constitute an unbroken tract of B ancestry, and in B, the yellow and green fragments make up an unbroken
tract of B ancestry.
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For the first class of simulations, simulations under the
model, we consider chromosomes moving in continuous
space and time, with recombination modeled as a Poisson
process through continuous time and independent move-
ment of all products of recombination. Chromosomes were
simulated by generating a vector of recombination times un-
der a Poisson process and then uniformly placing the recom-
bination events on a chromosome. Geographic positions
through time were assigned to chromosomal segments at
each recombination event such that adjacent segments fol-
lowed the same path until the time at which a recombination
event occurred between them, after which they followed
independent paths. The positions were assigned by drawing
the geographic displacement that occurred between recom-
bination events from a Gaussian distribution withmean zero
and variance equal to s2 multiplied by the amount of
elapsed time. This is an explicit simulation of the model
described above. We simulated 10,000 chromosomes under
the model.

The second class of simulations, simulations under the pro-
cess, are forward-time,discrete-generation simulationsofa grid
of discrete populations in continuous time. In these simula-
tions we record the complete recombination history of each
chromosome. As such simulations allow genetic drift, enforce
a pedigree structure onto local ancestry, and occur in discrete
time and space, these simulations under the process present
a biologically realistic challenge to many of our major model-
ing assumptions. We consider 200,000 diploids (400,000
chromosomes) evenly spread across 20 demes. Demes are
connected through nearest-neighbor migration with a per-
generation, per-individual probability m of migration (this
migration rate is reduced to m=2 on demes at the edges of
one-dimensional space). We sample the number of recombi-
nation events each generation from a Poisson distributionwith
mean of one, corresponding to a 1 Morgan chromosome, and
recombination events are uniformly placed along a chromo-
some (i.e., no recombinational interference). Every genera-
tion, migration, random mating, and recombination take
place, and we record for each piece of chromosome the pop-
ulation from which it was inherited (i.e., its ancestry). After t
generations we sample chromosomes and assign ancestry
along each individual’s chromosome based on whether ances-
tors originated in populations 1–10 (ancestry B) or in popula-
tions 11–20 (ancestry A).

Inference of parameters in human admixture data

We now use our theory to infer parameters in a demographic
model, using real data. To do this, we can use either ancestry
LD (Equation 4) or ancestral block length distributions (de-
rivable from Equation 5).While the distribution of continuous-
ancestry tracts necessarily contains more information than
LD alone, there are limits to the precision of themeasurement
of tract length over short recombination distances (which
would reflect old events). This, combined with the relative
ease of obtaining LD measurements from genomic data,
motivates the use of LD in our analysis of human admixture

contact zones. A variety of methods, including ALDER (Loh
et al. 2013) and Globetrotter (Hellenthal et al. 2014), esti-
mate some measure of admixture LD that is an estimate of
ancestry LD. We use the weighted LD curves generated by
ALDER, which computes the statistic

aðrÞ ¼ 1
jSðrÞj

X
ðM;NÞ2SðrÞ

dCovðM;NÞðpAðMÞ2 pBðMÞÞ

3 ðpAðNÞ2 pBðNÞÞ;
(10)

where the sum is over a set of pairs of autosomal loci, SðrÞ; each
of which is r apart (in practice, this method uses d in place of r,
and for analysis using ALDER output, we do the same). After
Loh et al. (2013), ðM;NÞ is a pair of loci, pAð�Þ and pBð�Þ are
sample allele frequencies in the parental populations A and B,
and dCovðM;NÞ is the sample covariance between alleles at the
two loci within the target population. If r is large enough that
background LD in the ancestral populations can be ignored, and
the allele frequencies in the parental populations are known,
then E½aðrÞ�¼ 2að12aÞF2ðA;BÞ2Covð1BðA1Þ;1BðA2ÞjrÞ; where
Covð1BðA1Þ;1BðA2ÞjrÞ is the expected covariance in ancestry
between pairs of loci a recombination fraction r apart, a is the
ancestry proportion of population A in the admixed popula-
tion, and the constant F2ðA;BÞ2 measures differentiation of
allele frequencies between the two parental populations. Of-
ten, the true parental populations no longer exist, or are not
sampled, and instead proxy parental populations are desig-
nated. In these cases, F2ðA;BÞ2 is a measure of the shared
differentiation between the true parental populations and
the proxy populations (Loh et al. 2013).

Admixture at a single time point: Under a basic model of
admixture, decay in ancestry LD can be described by the
parameters F, t, and G in the exponential model

E
�
aðrÞ

�
¼ Fe2rt þ G (11)

corresponding to a single pulse of admixture t generations
ago. This reflects the exponential decay of admixture LD with
time due to recombination between two loci separated by
recombination fraction r and is the model used by ALDER
(Loh et al. 2013) and Globetrotter (Hellenthal et al. 2014)
to estimate admixture timing in a single population.

The termG represents LD between unlinkedmarkers due to
substructure in the sampled individuals with respect to their
ancestry proportions. Under themodel of Loh et al. (2013), the
value F þ G corresponds to F2ðA;BÞ2ð2að12aÞ þ 2VarðaÞÞ;
where a is the admixture proportion and therefore is a com-
pound parameter reflecting both admixture proportion and
differentiation between parental populations (Loh et al.
2013). This is the expected variance in allele frequency at
a single locus, which is a function of the differences in allele
frequency between the parental populations, the proportion of
ancestry from each parental population, and the covariance
that arises from nonrandom mating with respect to ancestry
in the admixed population.
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Fitting to a geographic contact zone: Under our model, we
take a set of admixed samples drawn from n populations, who
fall at positions ℓ1;⋯; ℓn along a linear geographic transect.
The geographic location of the center of the zone along this
transect is C, such that sample 1 is a distance ℓ1 2C from the
zone. We specify a pair of proxy parental populations A and B
to represent the end points of the contact zone. Using ALDER,
we generate the statistic ajðriÞ for the jth population sample
for each genetic distance bin (i), giving us a set, a; of
weighted-LD decay curves (as defined in Equation 10). We
use the minimum inter-SNP distance determined by ALDER
based on LD in the parental populations.

To assess the uncertainty in a; we estimate the variance
in ALDER’s statistics, using the jackknife (which is an output
of ALDER). For each of the c ¼ 22 iterations, one chromo-
some is removed before recalculating a for the remaining
21 chromosomes. We use this to calculate the variance
Vi; j ¼ Var



aj


ri
��



c2 1
�
=c
�
: We then conduct a least-squares

fit of the ALDER output to our prediction given by Equation 4
for values of t, s, F [which accounts for differentiation
between the parental populations in the same way that
F2ðA;BÞ does], and C. We fit all n populations simulta-
neously, minimizing

Lða; t;s;C;FÞ ¼
Xn
i¼1

X
j

1
Vi; j

ðaiðrjÞ2Dðrj; ℓi2C; t;sÞFÞ2:

(12)

Our choice of LðÞ would be the negative log-likelihood of
our parameters if our ajðriÞ were Gaussian [a reasonable ap-
proximation given the large number of pairs of markers con-
tributing to each value of aiðriÞ] and independent.We refer to
LðÞ as the log-likelihood, and because we are mainly inter-
ested in t and s, we generate profile surfaces of L across
combinations of t and s. Specifically, we set a value for C
based on a fit of Equation 1 to ancestry proportion and gen-
erate a likelihood surface over a grid of t3s3F and for
each combination of t andswedefine the profile log-likelihood
as the maximum log-likelihood across all of our correspond-
ing F grid points. The grid of F values that we fit over is
informed by the strength of differentiation between the
parental populations.

Wenote that, althoughEquation 11 includes an affine term
to account for LD that could be generated by an unspecified
model of population substructure, our model does not. This is
because a source of long-range LD is incorporated into our
model via gene flow from neighboring populations with
different admixture proportions.

Data availability

Using Equation 12, we fit our model to genomic data from
populations that potentially represent admixture contact
zones. These data were obtained from previously published
studies, as detailed in Table S1, and are available publicly or
upon request from their respective authors.

Custom scripts for simulations and fitting of data are
available as Supporting Information, File S2 and File S3, and
at https://github.com/asedghifar/NeutralZones.

Results

Simulation results and comparison to
exponential model

Figure 3 shows the decay in LD at various points in time and
space and shows the exact correspondence between the an-
alytic expression of Equation 4 and the output of simulations
under the model. As expected, the rate of decay increases
with age, and LD is greatest at the center of the zone. While
LD decays from a higher point in populations closer to the
center of the zone, the rate of decay is greater in populations
farther from the center of the zone. Dispersal is measured in
the same units as distance from the zone center, and so the
impact of dispersal on curves can be measured simply by
rescaling the distance parameter.

To evaluate the consequences offitting a single-pulsemodel
to data generated by our spatial model of continuous admix-
ture, we fitted the exponential decay of Equation 11 to a set of
simulated populations from a 50-generation-old contact zone
under the model. The comparison, shown in Supporting
Information, Figure S1, of best-fit parameters indicates that
the simple exponential tends to underestimate the age of the
admixed population, presumably because of the continuous
introduction of migrants bearing long ancestral haplotypes.
In other words, the poor fit of the single-pulse model to these
LD decay curves, especially close to the center of the contact
zone, is due to the heterogeneous mixture of recombination
times. Consistentwith this interpretation, the effect diminishes
in populations far from the center of the zone, as the difference
in ancestry composition between neighboring populations
decreases as the distance to the center increases.

To demonstrate our inference method as described above,
we fitted our model (Equation 4) to the curves generated
under the process. Because we simulated single chromo-
somes, we could not use the jackknife estimator of variance
and therefore modified Equation 12 by removing the denom-
inator.We removedpopulationswithnodetectable admixture
from the fit, limiting our analysis to populations close to the
center of the contact zone. The profile likelihoods of these
surfaces are shown in Figure 4. The maximum-likelihood
estimates of t and s are ð2; 0:17Þ; ð38; 0:12Þ; and ð93; 0:11Þ
for zones simulated under t ¼ 5; t ¼ 50; and t ¼ 100; re-
spectively, all with s ¼ 0:1: We further explored the perfor-
mance of our inference framework under different values of
s and t (Figure S2). The method generally performs well.
The accuracy of inference decreases with smaller values of s
and t, presumably due to the increased noise from the small
number ofmigrants and recombination events and perhaps also
due to increased discrepancies between the discrete time and
space simulations compared to the continuous time model.

Compared to the true values we use to simulate under the
process our inference method tends to slightly underestimate
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the age of the contact zone.We expect that this is in part due to
the discrete nature of the simulation. These estimates are closer
to the true simulated ages than those obtained using the same
method to fit an exponential (Equation 11), which estimated
1:9,bt, 4:2 for t ¼ 5; estimated 20:4,bt, 25:6 for t ¼ 50;
and estimated 40:0,bt, 59:5 for t ¼ 100 (compare to the
results of our method on the same data above).

Finally, we compared our estimates of continuous length
distribution to simulated tract lengths under the model.
Figure 5 shows the distribution of tract lengths in simulated
populations along contact zones of two different ages as well
as the convergence of the sum in Equation 9 as k  * (the max-
imum number of recombinations) is increased. The approxi-
mation using k  * works best for young contact zones and for
the distribution for short tract lengths. For older zones and
longer tracts, summing over k  * is computationally intensive,
and the numerical approximations using the differential
equation approach (Appendix D) may be more tractable.

Application to human data sets

We applied our model to three independent sets of popula-
tions that potentially represent admixture in a spatial context:
populations along the Indonesian archipelago and New
Guinea, populations in Central Asia, and populations in India
(Table S1). Genetic distances between SNPs were inferred
using sex-averaged recombination rates from deCODE (Kong
et al. 2010). Each of these data sets has been previously
analyzed for admixture times, using the single-pulse admix-
ture model (Xu et al. 2012; Moorjani et al. 2013; Hellenthal
et al. 2014), and our aim was to compare results and good-
ness-of-fit of our geographic admixture model to the single-
pulse (“exponential”) model.

Indonesian archipelago: Populations along the Indonesian
archipelago and New Guinea show a longitudinal cline of

admixture between East Asian and Papuan autosomal ances-
try (HUGO Pan-Asian SNP Consortium 2009; Xu et al. 2012;
Lipson et al. 2014). The decrease in proportion of Asian an-
cestry with longitude has been interpreted as evidence of the
Austronesian expansion from the west through Indonesia. Xu
et al. (2012) fitted simple admixture models independently
to each of the populations to infer admixture times of 120–
200 generations, with populations with higher levels of Pap-
uan ancestry having more recent admixture times. A more
recent analysis using ALDER estimated single admixture
dates for populations in the region in the range of 30–60
generations, suggesting that this in part is the result of sub-
sequent waves of gene flow from populations with varying
levels of Asian ancestry (Lipson et al. 2014).

Weobtained thegenotypes for sevenpopulation samples in
Indonesia (shown in Figure 6 and Table S1) from the HUGO
Pan-Asian SNP Consortium (2009) and a Papuan population
from the Human Genome Diversity Project (HGDP) (Li et al.
2008). The combined data set yielded 17,057 shared SNPs.
We first ran STRUCTURE (Pritchard et al. 2000) with k ¼ 2
on these nine samples. The admixture proportions obtained
from STRUCTURE confirm the east-to-west cline (shown in
Figure 6). We then used least squares to fit Equation 1 to
these admixture proportions, which estimated the cline
center at C ¼ 124�99E and s2t ¼ 50:9: Based on ancestry
proportions, we chose the Mentawai population and the
Papua New Guinean population as proxy source populations
to generate ALDER curves. Simultaneously fitting our model
to the six admixed populations, we generated the profile-log-
likelihood surface shown in Figure 6. The parameters that
minimized Equation 12 were an approximate contact time
of �200 generations ago [or 5800 years, given a generation
time of 29 years (Fenner 2005)], s ¼ 0:63  � per generation
(�  66  km per generation), and F ¼ 0:0045: Our estimate of
s seems reasonable; using differences in estimates of

Figure 3 LD decay curves for popula-
tions of increasing distance ℓ from the
zone center and increasing age of con-
tact zone. Solid lines represent analytic
predictions and dotted lines represent
the output of simulations under the
model as described in Materials and
Methods.

LD in Neutral Contact Zones 251

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/201/1/243/5930059 by guest on 10 April 2024

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179838/-/DC1/genetics.115.179838-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179838/-/DC1/genetics.115.179838-4.pdf


admixture dates in each of these populations, Xu et al. (2012)
propose a mean dispersal of 22.5 km per generation in these
populations. The fit to LD decay curves under these estimates
is shown in Figure 6 and Figure S3.

We also explored the fit to LD decay curves of the single-
pulsemodel,fittingEquation 11by least squares (weighted by
jackknife variance as in Equation 12). Unsurprisingly, thefit of
our model is not as good as that of a model in which all
admixed populations are considered as having a single ad-
mixture time but allowed different values of F (L ¼ 100; 370
compared to L ¼ 94; 147) since independently fitting the
y intercept to each population allows for many more param-
eters while these intercepts in our model are constrained by
geographic distances between the populations. The fits to
each population are presented in Table S2 and are in good
accordance with those found by Lipson et al. (2014), using
similar methods.With this approach, the mean timing among
the admixed populations is 60.8 generations (we ignore the
Javanese population that has little admixture and an esti-
mated admixture time of 665 generations as this is far older
than all the other populations).

Additionally, we considered fitting all populations simul-
taneously for a single time under the exponential model
(Equation 11), allowing each population to choose its own
F parameter to account for differences in admixture propor-
tions. Under this model we obtain an estimated age of t � 63
generations (L ¼ 98; 706). Given that the truth is likely more
complex than both the exponential and contact zone models,
this better fit is not surprising given that we are allowing each
population to fit its own intercept.

Linguistic evidence suggests that the Austronesian expan-
sion through Indonesia dates to�  4000 years ago (Gray et al.
2009). As noted by Lipson et al. (2014), these single-pulse
dates (Table S2) are too recent to reflect this, consistent with
our earlier observation that admixture times may be under-

estimated by a simple exponential model if admixture has
been ongoing. Our estimate of timing based on fitting a geo-
graphic contact zone (5800 years ago) is much older than
dates estimated by single-pulse models, but is also consider-
ably older than the Austronesian expansion. Considering that
it is constrained by having to fit all populations simulta-
neously, our model provides a good fit to these genomic data.
One possible explanation for our overestimate of admixture
time is the assumption of a continuous rate of diffusion after
initial contact. Despite this, our modelmay be amore realistic
depiction of ongoing gene flow than a single-pulse model.

India: Population structure in India is complex and multilay-
ered. While the precise history of human movement in this
region is unclear, work by Moorjani et al. (2013) and Reich
et al. (2009) suggests that many modern Indian populations
are descendants of an admixture event between differenti-
ated ancestral North Indian (ANI) and ancestral South Indian
(ASI) populations, with a cline in the extent of ANI ancestry
from north to south across the subcontinent, shown in Figure
7. While it is difficult to identify modern proxies of the pa-
rental populations, the ANI population appears to be most
closely related to Western Eurasian populations (such as
Georgia) and the Onge population of the Andaman Islands
seems to draw much of its ancestry from the ASI population.
Moorjani et al. (2013) broadly grouped their samples into
Indo-European or Dravidian samples and, under this classifi-
cation, found that the decay in ancestry LD in their samples
was consistent with two historical admixture events, the first
�108 generations ago, giving rise to the Dravidian popula-
tions, and a second wave of admixture from the north taking
place 36 generations later that contributed to the ancestry of
Indo-European populations.

We obtained the genomic data used in Moorjani et al.
(2013) (from Li et al. 2008, Reich et al. 2009, Metspalu

Figure 4 Analysis of simulations under
the process run with parameters t ¼ 5;
t ¼ 50; or t ¼ 100 andm ¼ 0:01 under
nearest-neighbor migration, correspond-
ing to s2 ¼ 0:01 in the continuous
model. (A) Output of simulations (solid
lines), compared to the continuous time
and space model of Equation 4 (dashed
lines) and a discrete time and space ex-
pression from Equation B2 (dotted lines).
(B) Profile-likelihood surfaces describing
the fit of our continuous model to simu-
lations under the process. Green asterisks
indicate simulated values.
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et al. 2011, and Moorjani et al. 2013), yielding �  83; 000
shared SNPs, and used only the populations represented in
table 1 of Moorjani et al. (2013) (see Table S1). We then fit
our model to LD curves generated by ALDER, as described
above. Fitting a model in which all Indo-European and Dra-
vidian populations are the outcome of a single admixture
contact zone yielded an age of �220 generations since con-
tact (Figure 7, Figure S4). (Additional details of the fitting
procedure for the Indian populations can be found in File S1.)

Several aspectsof thedata indicatepotentialmisestimation
of dates. Some populations, presumably the oldest, have very
little admixture LD, which may prevent an accurate fit to the
decay. Second, it is possible that the samplingof populations in
space does not span a broad enough distance to obtain an
accurate fit. Substructurewithin populations, due to practices
such as endogamy, may also influence ancestry LD within
a population and cause a deviation from expectations under
a null model of locally random mating. We take these chal-
lenges, and the uncertainty in our results, as an indication that
the complicated demographic histories of these populations
are poorly described by a simplistic model of the sort we
consider here. These challenges also likely apply to other
analyses of these data, and caution is warranted in judging
the age of this zone.

Central Asia: Populations in central Eurasia show varying
levels of East Asian ancestry. In a global analysis, Hellenthal
et al. (2014) identified a signal of admixture, usingMongolians
and Iranians as proxy source samples, in Turkish, Uzbek,
Hazara, and Uygur samples. The proportion of Mongolian
ancestry decreases with longitudinal distance from Mongolia,
with the Turkish populations harboring the lowest proportion
of Mongolian ancestry. The estimated admixture dates for
these populations of 20–30 generations in the past found by
Hellenthal et al. (2014) are consistent with the timing of the
westward military movement of Mongolians during the 13th
century.

We took thegenomicdata for the fouradmixedpopulations
and the two proxy source populations from the data set of
Hellenthal et al. (2014) (�500,000 SNPs). A STRUCTURE
analysis of these populations, with k ¼ 2; is consistent with
a gradient in Mongolian ancestry across Central Asia (Figure
8). We used ALDER to generate weighted covariance curves,
using the Mongolian and Iranian samples as the two proxy
source populations. For the four admixed populations, the
best fit under our simple contact zone model is �49 gener-
ations or 1421 years ago (29 years per generation), with
s ¼ ð3:7� � 300  kmÞ per generation (see Figure 8 for the
profile-likelihood surface, computed over 20 values of F be-
tween 0.001 and 0.01). This admixture date predates the
Mongolian invasion of Central Asia that took place �800
years ago. However, it is known that human movement in
Central Asia was complex and preceded the Mongolian inva-
sions by centuries, and it is possible that our estimated date is
capturing a signal of these earlier migrations. This is sup-
ported by recent analyses of Central Asian populations by
Yunusbayev et al. (2015). Our estimated parameters under
the exponential model can be found in Table S3.

ALDER identified extensive long-range LD in the Hazara
population, possibly due to population substructurewithin this
sample with respect to Mongolian ancestry. Because this could
potentially influence our inference,we refitted the LD curves to
the set of admixed populations, excluding the Hazara. This
produced an estimate of 37 generations (see Figure S6 and
Figure S7 for LD curves in Central Asian populations).

One consideration in our applications is our assumption
that the populations spread back into contact and then simply
passively diffused into each other. This is obviously likely
a poor description of the movement of Mongolian genotypes
across Asia during the 13th century invasions, which could
result in a discrepancy between expected and predicted decay
in ancestry LD.We thereforeproposedanalternatemodel that
allows for an initial fast pulse of Mongolian migration into
central Asia, followed by diffusion through local geographic

Figure 5 Distribution of tract lengths, ex-
pressed as the frequency of tracts that are at
least a given length (i.e., the complementary
cumulative distribution of tract lengths). The
following shows the distribution for popula-
tions L units away from the center of a contact
zone. The solid lines represent the output of
a simulated contact zone with no drift (simu-
lated under the model, described in Materials
and Methods). For the 5-generation contact
zone the four dotted lines per geographic po-
sition represent the predicted distribution un-
der approximations conditioning on at most
three, four, five, or six recombination events.
For the 10-generation contact zone, the three
dotted lines represent approximations condi-
tioning on at most three, four, or five recombi-
nation events.
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dispersal (i.e., our Brownian motion). Explicitly, we construct
amodel that defines two new parameters: C1; a point in space
to the east of which some proportion, c, of the population is
replaced by Mongolian genotypes t generations ago (see
Appendix E for mathematical details). In specifying this model,
we are trying to capture a scenario in which, at least initially,
unadmixed Mongolian genotypes rapidly spread westward.
However, we acknowledge that this is at best a very crude
approximation to the true history. Note that while C1 is anal-
ogous to the contact zone center estimated in the original
model, which was estimated using admixture proportion,
when fitting the weighted-LD curves to the modified model,
we are fitting two additional parameters, C1 and c.

While this alternate model provides a better fit to admix-
ture proportions (Figure 8 shows the fit with c ¼ 0:55 and
C1 ¼ 62:7), given the few populations, this good fit may re-
flect overparameterization of the model. Furthermore, a
search for the best fit to the LD decay curves returned param-
eters that were effectively identical to the initial basic model
proposed (c � 1; cline center �  71�E), indicating that this
is not a likely alternative model (profile-likelihood curves

for each fitted parameter are shown in Figure S8). Given
the early estimated admixture date, it is possible that admix-
ture across Central Asia is not a product of a single event as
our models, and those of others (Hellenthal et al. 2014),
assume, but rather a result of complex human migrations
throughout time. Despite the limitations imposed on infer-
ence of parameters by the small number of populations,
broad patterns of ancestry LD across space are nevertheless
somewhat consistent with our proposed model of ancestry
LD decay across space along an admixture gradient.

Discussion

The generation and subsequent decay of admixture LD as an
outcome of interbreeding between differentiated populations
leaves a population genetic signature that is a valuable tool
for understanding the nature and timing of admixture. Exist-
ingmethods formodeling decay in admixture LD consider the
expected rate of decay in one population at a time and often
assume a simple one-time “pulse” of admixture without sub-
sequent gene flow from neighboring admixed populations.

Figure 6 (A) Longitudinal cline in Asian ancestry. Black dotted line shows best fit to Equation 1. (B) Sampling locations of Indonesian populations. Blue
circle denotes the representative Asian ancestral population and red circle the representative Papuan population. Vertical yellow line shows location of
the inferred cline center. (C) Profile likelihood surface (over a grid of 30 F values between 0:002 and 0:005) for t and s under Equation 12 for all
admixed Indonesian populations. The blue line represents the curve 50:9 ¼ s2t; corresponding to the value of this compound parameter that is
obtained by fitting to admixture proportions alone as shown in A. (D) Weighted-LD curves for two populations, Java (IDJV) and Alorese (IDAL), that are
different distances away from the center of the cline. Gray points represents estimates of LD generated by ALDER, and black curves are expected LD
under the estimated parameters.
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Here, we have described a neutral model under which indi-
viduals diffuse across space after secondary contact. Based on
this model, we derive an analytic expression for the expected
decay in ancestry LD as a function of time since contact and
a population’s position in space. We consider this an alternate
model to one in which admixed populations are indepen-
dently formed by a single-pulse event with potential subse-
quent gene flow from parental populations. This model is
suitable for recent secondary contact, when the genomic sig-
natures of admixture are detectable and the timescale of ad-
mixture is smaller than that of drift.

In contrast to previous analyses of spatial admixture that
treatedpopulations as independentadmixture events (e.g., Xu
et al. 2012), we consider data from all sampled populations
simultaneously to build a model that incorporates all avail-
able information and accounts for the movement of individ-
uals between populations. Compared to the expression for
ancestry LD derived here, a simple exponential model tends
to underestimate the time since admixture, as it does not
account for the introduction of long ancestral haplotypes
from neighboring populations.

Additional sources of covariance

In developing tractable approximations to spatial admixture
contact zones we have ignored genetic drift and the genea-
logical structure imposed by the pedigree.

Genetic drift is not problematic if population densities, and
dispersal rates, are high enough that coalescence between

geographically close lineages is unlikely over the time since
coalescence (as is likely the case in our human applications).
Otherwise, a theoretical approach incorporating coalescence
will be needed (see Barton et al. 2013 for recent progress).
However, in that case, background LD and admixture LD will
be on comparable genomic scales, making the job of separat-
ing the two much more challenging.

The other form of correlation structure that we have
ignored is that imposed by the genealogy (Wakeley et al.
2012; Liang and Nielsen 2014a). When multiple crossovers
during meiosis segment the stretch of chromosome we are
considering, odd-numbered recombinant segments come
from one parent, and even number segments come from
the other parent; the result is that nonadjacent segments
are found in the same parent and are hence nonindependent.
This additional covariance from the pedigree structure does
not affect our pairwise model of ancestry LD if r is strictly
defined as a recombination fraction, as an odd number of
recombinations between our pair of loci means that the two
alleles are present in different parents in the preceding gen-
eration and thereafter follow independent trajectories back
in time. Our block length calculations ignore this form of
covariance, as we assume that fragments follow independent
spatial paths backward in time after recombination events.
This assumption will be problematic only for long regions
(where more than one recombination can happen per gener-
ation) and for short time intervals (i.e., small t). However,
in such cases, ignoring genetic interference may present

Figure 7 (A) Latitudinal cline in ANI ancestry. (B) Locations of Indian populations used in the analysis. Yellow line indicates location of inferred cline center. (C)
Profile-likelihood surface for t and s under Equation 12. Blue line represents the relationship s

ffiffiffi
t

p
¼ 25:4; as obtained from the cline in ancestry proportion.

Asterisk denotes values providing best fit. (D) Weighted LD curves estimated by ALDER, for northwest (Kashmiri Pandit), southern (Vysya), and northeast (Kanjars)
populations. Gray points are estimates generated by ALDER, and black curves are expected LD under the estimated parameters.
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a greater source of error than ignoring this additional source
of covariance.

Application of the model to human admixture data

We used our model to estimate ages of admixture events and
dispersal distances, using genomic data fromadmixed human
populations. To do this we fitted our expressions for ancestry
LD to the output of weighted LD from ALDER, but similar
information about ancestry LD can be obtained from other
methods such as Chromopainter (Lawson et al. 2012).

Our spatial model provided a good fit to admixed popula-
tions along the Indonesian archipelago, consistent with a rel-
atively straightforward history of admixture across space. Our
estimated time of initial contact is somewhat consistent with
the work of Xu et al. (2012) and is older than that reported by
Lipson et al. (2014). Our deeper admixture time estimate
likely reflects the fact that inference under single-population
admixture models will produce estimates of timing of initial
admixture that is more recent than estimates under our con-
tact zone model. Our estimate of �  6000 years ago is older
than estimates obtained from linguistic analysis (Gray et al.
2009). This could be in part due to the simplifying assump-
tions of our model, which requires dispersal to be constant in
time and space. One could imagine, for example, that if there
were pulses of humanmovement followed by a slowing down
of dispersal, this would affect our estimate. Finally, we note
that the analysis on the Indonesian population was carried
out on a relatively small number of SNPs (�17,000). While
increasing the number of SNPswould likely improve the anal-
ysis, we believe that this demonstrates the utility of this ap-
proach even on smaller data sets. It should be noted that the

density of SNPs required will depend on the scale of LD pres-
ent in the populations.

Our spatial model provided a poor fit to the Indian and
Central Asian populations. This is likely due, in part, to
deviations from a simple model of instantaneous removal of
a barrier to contact and continuous diffusion thereafter. A
better fit to the data is possible using separate “single-pulse”
models for each population; this is unsurprising, given the
number of additional parameters such a model uses.

In India, a complex population structure, a caste system,
and potentially twowaves of contactmay have all contributed
todifficulties infindingparameters thatfitunderourmodel. In
particular, the need to separately estimate the interceptmeant
that there was relatively little information in the decay curves
about the timing and mode of admixture. This is especially
problematic for older admixture (particularly in the Dravi-
dians), as there is relatively little admixture LD over larger
scales and consequently much of our information relies on LD
over short genetic distances (,  1 cM). Given this paucity of
information, it is likely that many, and quite different, admix-
ture models would fit these data nearly equally well. As such,
our fit and estimate of timing, and indeed the estimates under
alternate models, should be interpreted with caution.

The limited number of populations in Central Asia with
signals of Iranian and Mongolian admixture places a limit on
the confidence for the fit to the data under any dispersal
model. Furthermore, it is known that human movement in
the region spans many centuries and is unlikely to be simple.
While earlier attempts to date admixture in these populations
estimate admixture times of�  30 generations, corresponding
to the Mongolian invasions (Hellenthal et al. 2014), our

Figure 8 (A) Geographic location of Mongol–Iranian admixed populations used in the analysis. (B) Ancestry proportions, with best fit under the basic
Brownian model (dotted, thick line) and under the pulse model (solid thin line). (C) Best fit under our model to LD-decay curves (Hazara not shown) and
profile-likelihood surface to the set of all four populations (top right). Blue line indicates 4:2 ¼ s2t; the compound parameter estimated by fitting to
admixture proportions.
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estimated time is much older, at �  50 generations. It is un-
likely that our demographic model is a good approximation
to historical humanmovement in the area, and this is likely to
have affected our inference. However, it is possible that our
estimate of earlier admixture is in part reflecting older human
movements in the region, and this is in part supported by the
findings of Yunusbayev et al. (2015).

While ourmodelmaynot provide agreatfit to thesehuman
contact zones, our results highlight the sensitivity of the age of
admixture estimates to the model used. The continuous and
potentially complicated mixing of individuals in a contact
zone, especially close to the center of the zone, means that
the decay of admixture curves can be much slower than the
ageof the zonewould suggest. Therefore, inmanycases itmay
be difficult to know exactly when admixture began.

Extensions of the simple neutral model and
other applications

Our relatively simple expressions describing ancestry LD de-
pend on assuming Brownian movement and on ignoring ge-
netic drift and pedigree structure. The examples of human
admixture zones provided above indicate, however, that alter-
nativemodels may be needed to describe patterns of LD, given
different demographic scenarios. Because of the simplicity of
our model, modifications can be made with relative ease to
describe different geographic scenarios. For example, we were
able to apply a model in which the movement of Mongolian
genotypes began as a pulse of migrants, followed by diffusion.
In a similar vein, one could modify movement to contain
a Brownian drift parameter to account for directional migra-
tion, although this would require some consideration of how
the dispersal kernel of an admixed individual is determined.
Discrete deme models could also be used (as we develop in
Appendix B) to model complex histories of populations in geo-
graphic and temporal heterogeneity. However, in practice
there is not enough information in admixture LD decay curves
to infer detailed population histories with many parameters.

Wehave demonstrated that inference of admixture param-
eters can be greatly influenced by the choice of demographic
model. This highlights the need formore admixturemodels to
be developed to test with population genomic data and for
careful considerationofwhichmodel is appropriate for agiven
biological scenario. The model presented here makes some
progress toward addressing the movement of admixed indi-
viduals and presents a potential framework for future devel-
opment of dispersal models. As a final point, we note that all
(to our knowledge) admixturemodels to date, including ours,
assume that populations undergo differentiation in relative
isolation prior to secondary contact. Under this assumption,
there is a strong appeal to fit pulse models (such as a wave of
secondary contact) to human admixture data, with the goal of
estimating the timing of a pulse and relating it to particular
historical events. It seems that perhaps a more appropriate
nullmodel in these scenarioswould be one inwhich geneflow
has been ongoing between populations, but at a rate slow
enough to allow some differentiation to occur. Testing for

patterns of LD under this isolation-by-distance (or isolation–
migration) model would be a first step toward understanding
the demographic history of spatially distributed populations,
and the development of such a null model seems an impor-
tant step in creating future tools for population genomic
inference.

As mentioned above, LD has been used to characterize
hybrid zones (e.g., Szymura and Barton 1986; Mallet et al.
1990; Wang et al. 2011), and we see our framework as a po-
tential null model for spatial models of secondary contact,
whereby incipient species come back into contact. Although
tension zones can maintain distinct species, reproductive iso-
lation is often weak enough to allow diverged populations to
exchange alleles. In such scenarios, patterns of diversity that
depart from expected ancestry LD could be used to detect
potential targets of selection relevant to speciation or local
adaptation. It should be noted, however, that good estimates
of decay in ancestry LD require reliable genetic maps, as over-
estimates of genetic distance may give the appearance of
a slower rate of decay by inflating LD; this may be a limiting
factor in many systems.

The LD induced by the admixing of two differentiated
populations provides a powerful population genetic signal that
hasbeenmeasuredwithgenome-widedata to informthetiming
of historical admixture events. Building onmodels that use the
patterns of LD to infer admixture dates under scenarios with
discretizedmigration events,wehavedevelopedanovel frame-
work that accounts for continuous movements of haplotypes
through time and space. We believe that this can serve as
areasonablebasicmodel forunderstandingpatternsofdiversity
incontact zones.Furthermore,weseepotential for thismodel to
be further developed and tailored to fit a range of demographic
scenarios, including those that incorporate selection.
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Appendix A: Covariance in Ancestry

By integration by parts, Equation 3 becomes
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where ftðy; zÞ is the bivariate Gaussian density for jointly distributed ðY ; ZÞ with correlation t. The second term of (A1) is"
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For the third term of (A1), we can utilize the useful identity that for a bivariate Gaussian with variances 1 and correlation t
(Pearson 1901),
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Combining Equation 2 and (A1), (A2), and (A4) therefore leaves us with
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Appendix B: Island Model

In a discretized time and space model, with n islands of equal, constant size and per-generation migration rates defined by the
n3 nmatrixM, the motion of a single lineage is described by a discrete-time Markov chain, and so the expected frequency of
loci inherited from ancestry B in population X is

E
�
1BðAÞ

�
¼
X
j2S

Mt
X; j; (B1)

where t is the number of generations since admixture began, S is the set of demes that are defined as being ancestry B at the
time of contact, andMt

X; j is the X; jth element of the tth matrix power ofM. The covariance is derived by summing over possible
recombination times and the location of the allele at the time of recombination (N is the set of all locations):
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Note that r is the probability of any odd number of recombinations occurring, i.e., the probability that a Poisson random
variable with mean d is odd.

Appendix C: Unlabeled Rooted Topologies and Their Probabilities

Given thatwe condition on the number of recombination eventswithin a time interval, the events are uniformly distributed both
through timeandalonga chromosomeofunit length.Themost recent recombinationback in time is therefore theminimumtime
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for k uniformly distributed events. This first recombination event (in time) splits the chromosome into two products, which
become two subtrees, with j and k2 12 j recombinations, respectively. The two subtrees are independent and have similar
properties to those of the whole chromosome, so the process of bifurcation can be iterated. The first recombination splits the
remaining ones uniformly, such that the probability of generating one subtree of size j is 2s=k;where s ¼ 0when 2j ¼ k2 1 and
s ¼ 1 otherwise.

Thus, for the set of ak unlabeled topologies with kþ 1 leaves, T k ¼ fT k
1 . . . T k

akg; a topology T k
i is generated by joining

T j
m 2 T j with T k2j21

n 2 T k2j21 at the root (m and n are arbitrary). Because each subtree is independent, the probability, PðT k
i Þ;

of topology T k
i ; conditioning on k recombination events, can be obtained by the product of the probabilities of each subtree and

the probability of generating two subtrees of sizes j and ðk2 12 jÞ;
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where T k
i is the topology made by joining topologies T j

m and T k212j
n at the root. Here s indicates the symmetry of T k

i ; such that
s ¼ 0 if the tree is symmetric (i.e., the two subtrees T j

m and T k2j21
n are the same) and s ¼ 1 otherwise, so that 2s=k gives the

probability that the first recombination event in T k
i produces two subtrees of the required sizes.

When integratingover the set of all trees conditioningona topology,weneed tomultiply by theprobability densityVðt1;⋯; tkÞ
of the recombination times given the topology. We start by considering the probability of the first recombination event t1; at
the root of a ðkþ 1Þ-tipped tree, which is the first order statistic of k independent and uniformly distributed events over the
interval ð0; tÞ: The probability density of this first recombination given k total recombinations is therefore

k
t

ðt2t1Þðk21Þ

tk21 :

Similarly, the timing of the jth node is the first-order statistic within the subset of recombination events that generate the
subtree of which it is the root. The jth node, from which Mj nodes are descended, which itself is directly descended from the
parent node pj; thus has the probability density

v
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The independence of each subbranch allows us to compute the probability density of all recombination events as

Vðt1;⋯; tkÞ ¼
Yk
j¼1

v


tj; tpj ;Mj

�
:

Note that Equation C2 is the Beta distribution Bð1;Mj þ 1Þ; scaled to lie on the interval ½ti; t�:

Appendix D: Obtaining Block Length Distributions by a Branching Brownian Motion

Herewedescribe an alternative approach tofinding an expression for the probability that an entire region of length d is of ancestry
B, Udðt; ℓÞ of Equation 5, without conditioning on the number of recombination events. The process of recombination and
dispersal described above is analogous to a branching Brownianmotion (BBM), where recombination is represented by a splitting
event. In standard BBM, each lineage has the same rate of splitting, but here the total length of the chromosome is constant, and
sowe have conservation of the total rate of splitting d. The rate of splitting on a lineage decreases with each recombination event,
as both products of recombination are shorter (and therefore have a smaller probability of recombination).

Below,we derive an integro-differential equation satisified byU, similar to the classic analysis of branching Brownianmotion
by McKean (1975). Starting in the present, we follow a single lineage backward in continuous time. The movement of this
lineage is Brownianwith variance s2:Wemodel recombination events between the two loci as a Poisson process with rate d. At
the first recombination event, we generate a uniform random variable, r1 2 ½0; dÞ to represent the genomic position of the
recombination event. We then split the sequence into left and right fragments—½0; r1Þ and ½r1; dÞ; respectively. Following this,
the two linages move independently backward in time with respective recombination (splitting) rates of r1 and d2 r1: This
process is iterated over the time period t.
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Weconsidermoving back a very short time intervalDt from the present and take the expectation over the randomevents that
could have occurred in that time interval. (In other words, we are writing down the infinitesimal generator of this Markov
process.)

With probability 12 dDt þ OðDt2Þ there is no recombination during the intervalDt and conditioning on this, we have only to
take the expectation over the small random change D x in spatial location during this time,

Udðt; ℓjno  rec:Þ ¼ EDx
�
Udðt2Dt; ℓþ DxÞ

�
; (D1)

where ED x is the expectation over all changes in position X.
A recombination event occurs in the intervalDtwith probability dDt:Conditioning on recombination occurring at time trec at

position ℓþ D x9; producing two recombinants of length d1 and d2 r1;

Udðt; ℓjrec:Þ ¼
Z d

0

Z Dt

0
EDx9



Ur1

�
t2 trec; ℓþ Dx9

	
Ud2r1

�
t2 trec; ℓþ Dx9

	�
  dr1dtrec; (D2)

whereUr1 is the probability that all subsequent recombinants along the chromosomal fragment of length r1 are of ancestry type
B.

Combining (D1) and (D2) and taking Dt/0 obtains

@Ud

@t
ðt; xÞ ¼ s2

2
@2Ud

@x2
ðt; xÞ þ

Z d

0
Ur1ðt; xÞUd2r1ðt; xÞ2Udðt; xÞ  dr1; (D3)

with boundary conditions Udð0; xÞ ¼ 1 for x. 0 and Udð0; xÞ ¼ 0 for x# 0: This differential equation is solved by Udðt; xÞ;
defined in Equation 5, and is the probability that at time t in the past, the leftmost branch of this branching process initiated at
position x0 is at a position x. 0: This differential equation is related to that presented by Baird et al. (2003) to describe the
survival of genomic blocks within a panmictic population (but the latter does not have a spatial diffusion term). The equation is
similar to the Fisher-KPP equation, with differences arising from the nonconstant splitting rate. The first term of Equation D3
reflects the spatial diffusion of lineages, and the second term reflects the splitting of blocks of length d by recombination into
two shorter blocks (of size d2 r1 and r1) that each must be of type B.

Appendix E: Invasion Pulse

Because it is unlikely that Mongolian movement during the 13th century was Brownian, we construct an alternative model for
Mongolianmovement, in which individuals ofMongolian ancestry (ancestry B) initially invade and displace some proportion c

of the resident population over some geographic space ½C1;N�:We assume that most of the distance between C1 and the source
Mongolian population has been invaded in this way. This invasion occurs instantaneously at time t, such that the frequency of
ancestry B at time t is

gðBÞ ¼
�
0 x,C1
c x.C1:

Following the model presented inMaterials and Methods, we assume that a lineage that is found at position x.C1 at time t
has probability c of having ancestry B. The probability that a single lineage A; sampled at location ℓ at t ¼ 0; is given by

E
�
1BðAÞ

�
¼ c �F

�
ℓ2C1
s
ffiffiffi
t

p
�
:

For a lineage that has recombined, for both lineages to have ancestry B, both lineages have to be found in x.C1 at time t, at
which point there is ac2 chance of both having ancestry B. Using the approach taken in Appendix A, we can obtain the following
expression for ancestry LD at position ℓ:

ð12cÞce2rtF

�
ðℓ2C1Þ
s
ffiffiffi
t

p
�
þ c2

Z 1

0
e2rtt 1

2ps2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 t2

p exp

 
2

ðℓ2C1Þ2

ts2ð1þ tÞ

!
  dt: (E1)
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Table S1: Human populations used in analyses, with the geographic locations that were
used.

Population latitude longitude sample size
IDMT (Mentawai)1 0.3S 98.4E 15
IDJV (Javanese)1 7.3S 110.4E 19
IDSB (Kambera)1 9.8S 120.0E 20
IDSO (Manggarai)1 8.6S 120.1E 19
IDRA (Manggarai)1 8.7S 120.5E 17
IDLA (Lamaholot)1 8.3S 123.0E 20
IDLE (Lembata)1 8.3S 124.6E 19
IDAL (Alorese)1 8.3S 124.7E 19
Papuan2 4.0S 143.0E 17
Mongola3 48.0N 119.0E 10
Hazara3 33.0N 69.5E 22
Turkish3 39.0N 35.2E 17
Uygur3 44.0N 81.0E 10
Uzbekistani3 41.4N 64.6E 15
Iran3 32.4N 53.7E 20
Kashmiri Pandit4 34.22N 75.5E 20
Pathan2 32.35N 69.72E 23
Kshatriya5 27.56N 78.65E 27
Kanjar5 26.45N 80.32E 8
Brahmin (UP)5 26.02N 83.18E 15
Brahmin4 25.45N 82.41E 8
Kshatriya (UP)5 24.45N 82.41E 7
Kshatriya4 27.56N 78.65E 20
Dharkar5 25.44N 83.10E 12
Chamar5 25.37N 83.04E 10
Sindhi2 24.27N 68.70E 25
Bhil4 23.02N 72.40E 17
Madiga4 17.58N 79.35E 19
Mala4 17.22N 78.29E 18
Velama6 17.05N 79.27E 4
Vysya4 14.41N 77.39E 20
Kallar5 10.99N 78.22E 7
Onge5 11.6N 92.7E 9
Basque2 43N 0 24
1 The HUGO Pan-Asian SNP Consortium (2009);
2 Li et al. (2008);
3 Hellenthal et al. (2014);
4 Metspalu and Romero (2011);
5 Moorjani et al. (2013);
6 Reich et al. (2009)
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Table S2: Estimated parameters, under the exponential model (Eq. 11) for the Indonesian
populations used in our analysis (sum of squares fit). Here, each population has been fit
independently

Population % Asian Timing Constant(Multiplicative) Constant (Additive) L
IDAL 44.4 29.1 3.01e-04 2.47e-06 13732.60
IDJV 99.8 665.2 2.68e-2 5.80e-29 12138.46
IDLA 61.6 60.9 7.85e-04 2.016e-08 12505.03
IDLE 58.6 40.7 5.18e-04 6.22e-07 14097.24
IDRA 77.5 106.0 1.45e-03 2.80e-07 11188.83
IDSB 78.7 94.9 1.22e-03 8.16e-13 14042.64
IDSO 66.7 33.5 4.57e-04 5.81e-06 16442.91
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Table S3: Estimated parameters, under the exponential model (Eq. 11) for the Central Asian
populations used in our analysis (sum of squares fit). Here, each population has been fit
independently

Population % Mongola Timing (gens) Constant (Mult.) Constant (Add.) L
Hazara 55.0 25 3.8e-04 1.7e-05 347.1
Turkey 2.2 30 1.2e-04 1.8e-06 436.6
Uygur 55.2 24 3.3e-04 2.3e-05 509.8

Uzbekistan 42.3 20 3.1e-04 2.8e-05 393.5
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Figure S1: Exponential fits (Eq. 11) to ancestry-LD in populations sampled at locations
(L) from a 50-generation old contact zone. Solid lines represent the output of simulations
under the model, and dashed lines the best exponential fit. The estimated timing for each
population is shown in parentheses.

A. Sedghifar et al. 6 SI

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/201/1/243/5930059 by guest on 10 April 2024



1 2 3 4

5

6

7

8

1 2 5 10 20 50 100 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

τ

σ

1
2 3 4

5

6

7

8
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inferred combinations of parameters for each simulated dataset (red). All simulations here
were run under the process.
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Figure S3: Fits to decay for all Indonesian populations used in analysis, described in Table S1
using the best fit parameters as described in the main text. Grey points are estimates
generated by ALDER, and black curves are expected LD under the estimated parameters.
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Figure S4: Fits to decay for all Indian populations used in analysis, described in Table S1
using the best fit parameters as described in the main text. Grey points are estimates
generated by ALDER, and black curves are expected LD under the estimated parameters.
Blue names indicate Indo-European populations, and red labels Dravidian.
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Figure S5: Profile likelihood surfaces for fits to the Indo-European and Dravidian subsets of
the population. Blue asterisk indicates parameters giving best fit.
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ALDER, and black curves are expected LD under the estimated parameters.
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Figure S7: Best-fit curves for each population when the fit is made to the set of the four
Central Asian populations used in our analysis. Grey points are estimates generated by
ALDER, and black curves are expected LD under the estimated parameters.
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Figure S8: Profile likelihood curves for the five parameters fitted to the Central Asian
populations under the invasion-pulse model, showing that the best fit is to a model with
cline center at approximately 67◦E and ψ = 1. This is roughly equivalent to the original
model of secondary contact.

A. Sedghifar et al. 13 SI

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/201/1/243/5930059 by guest on 10 April 2024



File S1: Analysis of Indian populations

Following Moorjani et al. (2013), we ran the F4 ratio tool in the ADMIXTOOLS package
(Patterson et al. 2012) on Georgian, Basque, Yoruba, Onge and the focal Indian population
to estimate ANI ancestry proportions in these populations (Fig. 5). We fit a latitudinal cline
to these ancestry proportions (Eq. 1) returning a cline center at 24◦4′N and σ

√
τ = 25.4.

Because the gradient of ancestry could run along any geographic axis, we also tried to fit
ancestry proportion clines to various transects using linear combinations of latitude and
longitude. Since these did not produce substantially better fits than latitude alone, we chose
to use latitude as our geographic axis (results not shown). Through this analysis, we aimed
to closely follow the procedure outlined in (Moorjani et al. 2013) to generate LD curves
and improve model-fitting.

We then generated co-ancestry decay curves in ALDER for each of these samples, using
weightings from Basque and Onge parental populations as proxies for the ANI and ASI
populations (see Moorjani et al. (2013)). We consider three possible contact zone scenarios
under our geographic model: One in which all population samples form a contact zone and,
based on the findings of earlier studies, one that comprises only the Indo-European and one
that comprises only the Dravidian populations. We initially attempted to fit the τ , σ and F
parameters in Eq. 12 simultaneously, but faced some difficulty as there appears to be limited
information about F . This results in wide range of values fitting the data equally well, but
give rise to very different surfaces for σ and τ . We attributed this to a deficit of information
in the curves, leading to non-identifiability, due to relative low levels of differentiation and
relatively rapid decay of ancestry-LD. The difficulty in estimating the intercept of admixture-
LD curves had been noted before (Loh et al. 2013), and can reflect the fact that very close
pairs of markers are discarded to remove the effects of LD in the ancestral populations. This
results in the fitted curve being relatively unconstrained near r = 0. To remedy this, we
estimated F using an approach similar to that taken by Moorjani et al. (2013). Using
MIXMAPPER (Lipson et al. 2013), we estimated the value of F as 2F2(ANI;ASI)

2 using
the Onge and Basque populations as present day proxies. We then fit values of σ and τ under
the range of F2 values computed by MIXMAPPER ((0.015, 0.042)). The profile likelihood
surface was generated over 20 values of F . We also use the value estimated above as the
cline center for all three fits.

We first fit our LD curves to all populations under a model in which all Indo-European
and Dravidian populations are the outcome of a single admixture contact zone. The best fit
was approximately 220 generations since contact with σ = (0.9 degrees ≈ 100 km)/generation
(Fig. 5). Fits to the subset of populations classified as Indo-European yielded a contact zone
age of approximately 200 generations, and σ = (1.3 degrees ≈ 144 km)/generation (Fig. S5).
Finally, we fit the subset of Dravidian populations (Fig. S5), which found a best fit of 460
generations with σ = (1.2 degrees ≈ 133 km)/generation on a relatively flat surface. This is
likely because there is very little information in the decay of LD in this subset given there
are so few Dravidian populations, and that the LD curves are relatively flat. The profile
likelihood surface was generated over 40 evenly distributed values of F spanning the values
inferred above using MIXMAPPER. For all three groups of populations we used our earlier
estimate for cline center.
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Available for download at www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179838/‐/DC1 

 

File S2   The scripts in this file provide a very basic framework for fitting a spatial diffusion model of 

admixture to weighted LD. 

 

File S3   This R script was written to simulate recombining chromosomes in finite populations. This works 

by tracing the ancestry of each chromosome portion in an admixed population to the initial population. 

Each generation consists of SELECTION, RANDOM MATING (WITH RECOMBINATION) and MIGRATION 

and therefore accounts for population genealogy and drift. Generations are discrete.  
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