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ABSTRACT It is widely acknowledged that genome-wide association studies (GWAS) of complex human disease fail to explain a large
portion of heritability, primarily due to lack of statistical power—a problem that is exacerbated when seeking detection of interactions
of multiple genomic loci. An untapped source of information that is already widely available, and that is expected to grow in coming
years, is population samples. Such samples contain genetic marker data for additional individuals, but not their relevant phenotypes. In
this article we develop a highly efficient testing framework based on a constrained maximum-likelihood estimate in a case–control–
population setting. We leverage the available population data and optional modeling assumptions, such as Hardy–Weinberg equilib-
rium (HWE) in the population and linkage equilibrium (LE) between distal loci, to substantially improve power of association and
interaction tests. We demonstrate, via simulation and application to actual GWAS data sets, that our approach is substantially more
powerful and robust than standard testing approaches that ignore or make naive use of the population sample. We report several
novel and credible pairwise interactions, in bipolar disorder, coronary artery disease, Crohn’s disease, and rheumatoid arthritis.

GENOME-WIDE association studies (GWAS) have impli-
cated thousands of single-nucleotide polymorphisms

(SNPs) in the human genome as associated with hundreds
of phenotypes (Johnson and O’Donnell 2009). However, as
many researchers have pointed out (Manolio et al. 2009;
Eichler et al. 2010), the results from GWAS fail to explain
the observed heritability of many phenotypes, including
complex human diseases, whose genetic architectures re-
main largely unknown. One often-cited reason for this prob-
lem is that the high multiple-testing burden requires an
exceedingly stringent statistical significance level. Further-
more, while most studies have employed univariate (locus-
by-locus) testing approaches, complex diseases are likely to
be affected by interactions between loci (Eichler et al.
2010). Such interactions arise when there is a dependence
of genotypic effects of one locus on genotypes at other loci
(Cordell 2009).

In the case of interactions, due to the overwhelming
number of locus subsets, themultiple-testing problembecomes

a serious computational and statistical challenge. Even when
limiting exploration to pairwise SNP–SNP interactions, a
modest study including 300,000 usable loci requires testing
�45 billion SNP pairs, and associations must have P-values ,
�10212 (the 0.05 Bonferroni-corrected significance level) to be
declared statistically significant genome-wide. Recently, sev-
eral authors have suggested sophisticated approximate and
exhaustive methods for detecting pairwise interactions
(Brinza et al. 2010; Liu et al. 2011; Prabhu and Pe’er
2012). These methods constitute a major step in dealing with
the computational issue of carrying out the large number of
tests, but their application to actual studies has led to surpris-
ingly few replicable discoveries (for example, one pair in Liu
et al. 2011 and another in Prabhu and Pe’er 2012). Many of
the other reported pairwise discoveries fail after careful
scrutiny (see, for example, the discussion in Liu et al. 2011
and the Discussion in the present article). Given findings in
other organisms (Shao et al. 2008; Bloom et al. 2013), and
the biological plausibility of the existence of interactions, the
likely explanation for the limited GWAS results is that modest
interaction effects comprising common SNPs do exist; how-
ever, due to the aforementioned statistical challenge, the
tests employed are not powerful enough to detect them given
available sample sizes.

Improving power of tests used in GWAS is therefore an
extremely important research question today, especially
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when interactions are considered. One solution is to increase
sample sizes by collecting more case–control data. Indeed, this
is an ongoing trend, and ever-larger studies are in preparation
by various worldwide consortia. Often, however, independent
samples from the studied population but with unknown case–
control status are already available. Sources include, for ex-
ample, (i) population studies (Waye 2005; Siva 2008), (ii)
quantitative trait studies (Yang et al. 2010), and (iii) binary
trait studies that employ a case–population design [like the
Wellcome Trust Case Control Consortium (WTCCC) study,
discussed in more detail below]. The coming years are
expected to make such population samples available in increas-
ingly large numbers, given recently published government
plans in multiple countries to sequence hundreds of thousands
of genomes (http://news.sciencemag.org/scienceinsider/
2012/12/uk-unveils-plan-to-sequence-whol.html).

A key challenge is to make optimal use of these population
samples to increase power of GWAS in general and interaction
detection efforts in particular. The common existing practice is
to use only the case–control data and ignore the population
data completely. Some studies employ population data as ref-
erence panels from which linkage disequilibrium structure is
inferred. This can improve power by reducing the effective
multiple-comparisons burden, as well as by the finer localiza-
tion of detected associations through imputation. These meth-
ods are different from the one we develop and could be used as
well. In another approach, which is closer to the one studied
here, population samples are treated as additional controls
with the intention of increasing sample size and thus power
(Burton et al. 2007; Lippert et al. 2013). Arguably, for rare
diseases the latter approach is satisfactory (because controls
are very similar to the population). However, since this leads
to mislabeling of any cases in the population sample as con-
trols, for common disease this becomes a problem, possibly
causing more harm than good. We suggest a more appropriate
approach here that models the joint likelihood of the case–
control and population samples, in the expectation that cor-
rectly using all available data would result in significantly
improved power. This expectation is verified in our simulations
and is further reflected in application to real GWAS data for
seven different phenotypes studied by the WTCCC.

An important feature of our approach is its ability to
incorporate assumptions about the studied population. The
idea is that by exploiting additional properties of the data,
one can reduce the parameter space describing associations
of interest (Song and Nicolae 2009). This improves power to
detect associations that comply with the assumptions, at the
often acceptable cost of reduced power to detect implausible
associations. Two popular and broadly applicable popula-
tion assumptions that constrain the parameter space are
Hardy–Weinberg equilibrium (HWE) (the independence of
maternal and paternal allele values that make up each ge-
notype locus) and linkage equilibrium (LE) (the indepen-
dence of the two loci that make up a pair) (Yang et al.
1999; Chatterjee and Carroll 2005; Zhao et al. 2006). Im-
perfect as they may be (see Discussion), these assumptions

are expected to hold for the vast majority of associations
considered in a typical GWAS.

Thus, the main contribution of our present work is the
proposal of a method for use in GWAS that combines (a) the
correct handling of case–population or case–control–population
designs and (b) inclusion of population assumptions, to maxi-
mize efficiency of association testing. We show in simulation
results that our direct constrainedmaximum-likelihood (CMLE)
approach is substantially more powerful than ignoring extrane-
ous population data in a case–control study or using them
naively to extend controls. We then apply this method to the
seven phenotypes from the WTCCC study, which employs
a case–population design, with the cases of unrelated diseases
potentially serving as a source for additional population
samples. Our pairwise analysis of these data reveals multiple
new associations in several diseases. Examination of all signifi-
cantfindings shows that a large number of them include SNPs in
genomic regions not implicated by the original WTCCC study.
Interestingly, these regions include several loci that were iden-
tified and replicated in later studies employing standard analy-
sis methods but larger sample sizes—illustrating and validating
the improved power of ourmethod.We report several novel and
credible associations, including pairwise interactions in bipolar
disorder, coronary artery disease, Crohn’s disease, and rheuma-
toid arthritis.

An implementation of all tests described herein for
pairwise and univariate GWAS is available in the R statistical
computing software package CCpop. As our theory and results
demonstrate, our new approach can lead to substantial gains
in power (up to sevenfold in standard models, see Results).
We believe that practically every case–control GWAS can
identify relevant population samples to use as additional data
and that many of these studies can further justify population
assumptions when analyzing the data (any doubt about such
assumptions can be eliminated by using more general tests
during replication). Thus our recommendation is that previ-
ous studies be revisited with our approach and that new
studies use our tests rather than the traditional ones.

Methods

Association testing with case–control–population data

Here we describe our new approach that correctly handles
case–control–population designswithin amaximum-likelihood
framework. First, the method is presented in the context of
a single SNP. Second, we extend it to the case of two or more
SNPs. Finally, we show how to incorporate population assump-
tions into the model.

The univariate case: Let x be a diploid SNP locus with
genotypes in {0, 1, 2}, and let y be a binary disease pheno-
type coded 0 for controls (which are truly unaffected) and 1
for cases. Let n!¼ fni;jg1 2

i¼0;j¼0 denote the observed number of
samples in a standard retrospective case–control sample C with
y = i and x = j. Let ni; ¼

P
jni;j denote the number of individ-

uals with phenotype i and n;j ¼
P

ini;j denote the number of
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individuals with genotype j. Suppose there exists, in addition,
an independent population sample P with the observed geno-
type counts at x denoted m!¼ fmjg2j¼0: Let p!¼ fpijjg1 2

i¼0;j¼0 be
the probability of disease status i given the genotype j. For i =
1, this is referred to as disease penetrance. Denote p!¼ fpjg2j¼0
the marginal distribution of x in the population and K the
prevalence of the disease, which is assumed known.

The log-likelihood of the pooled data (C, P) may be writ-
ten as

l
�
p!; p!; n!;m!� ¼

X
i; j

ni; j log
�
pij j

pj

K

�
þ
X
j
mj logpj

}
X
i; j

ni; j log pij j þ
X
j

�
n; j þmj

�
logpj:

(1)

Without further assumptions on the natural parameter
space f p!; p!g; this space is of dimension 5, since p! must
sum to 1, and p1jj = 1 2 p0jj. The known prevalence K
imposes a constraint on this space:

X
j

p1j jpj ¼ K: (2)

Solving (1) for the maximum-likelihood estimator (MLE)
under the alternative hypothesis (of association between y and
x) may be approached directly as a nonlinear optimization prob-
lem with a nonlinear equality constraint (2) and “box” inequal-
ity constraints that keep all parameters in [0, 1]. Under the null
hypothesis (of no association), an additional constraint is im-
posed that the penetrance be flat p1jj [ c. Trivially, due to (2),

c ¼ K; pj ¼
n; j þmj

nþm
: (3)

This estimation approach works well, but convergence
under the alternative may not be fast enough to manage the
large number of tests that must be performed during GWAS.
Rewriting the problem in standard convex form (Boyd and
Vandenberghe 2004) and using modern solvers lead to faster
model fitting. Define qj = p1j jpj; solving (1) subject to (2) now
takes the following convex optimization problem form:

minimize
q!;p!

2
X
j

�
n0; j log

�
pj2 qj

�þ n1; j log qj þmj logpj
�

subject  to
X
j

qj ¼ K;
X
j

pj ¼ 1:

(4)

Notably, problem (4) is also subject to the implicit
domain constraints qj $ 0, pj $ 0, and qj # pj, but all
constraints are linear. It is possible to solve on the order of
tens of thousands of such small problems per second on
a modern personal computer, using a variety of off-the-shelf

open-source or commercial solvers. For example, one can sub-
stitute the equality constraint into the objective function, add
a logarithmic barrier for the box constraints, and solve with
Newton’s method or the BFGS algorithm (Ruszczynski 2011).

Problem (4) facilitates association testing within the
template of the generalized likelihood-ratio test (GLRT),
contrasting the maximum likelihood under the alternative
hypothesis with that under the null. The GLRT statistic
under the null is asymptotically distributed as a centered
chi-square random variable with 3 d.f. As described below,
this procedure readily incorporates standard population-
level assumptions that can be used to decrease the degrees
of freedom of the test.

The multivariate case: Case–control–population analysis
can be similarly applied for detecting associations that in-
volve multiple SNPs working together. The methods we de-
velop here are equally applicable to interactions of an
arbitrary number of SNPs. For exposition purposes, however,
we describe our methods and provide results in the context
of pairwise interactions, where power is desperately needed
but detection is still a feasible task.

Similarly to the univariate case, let x!¼ ðx1; x2Þ; with
x1 2 {0, 1, 2} and x2 2 {0, 1, 2}, be a pair of diploid SNPs.
Let ni,j,k denote the observed counts in C with y = i, x1 = j,
x2 = k, and let ni ¼

P
j;kni;j;k and nj;k ¼

P
ini;j;k be the dis-

ease status and pairwise genotypic counts, respectively. The
pairwise genotype counts in P are denoted mj,k. Let pijj,k be
the probability of disease status i given the pair of genotypes
and pj,k be the bivariate marginal distribution of the pair.

Testing for pairwise genetic association with disease is
typically formulated using a logistic parameterization of the
penetrance,

p1jj;k ¼
1

1þ exp
�
2jj;k

�;

where jj,k may take different forms, depending on the spe-
cific formulation (see Discussion). The approach we focus
on here tests for association while allowing for interaction
(Cordell 2009). In this approach one is interested in the
overall significance of the model for p! that includes effects
at both loci, compared to a null model that includes neither,

jflatj;k ¼ m

jfullj;k ¼ mþ a1Ij¼1 þ a2Ij¼2 þ b1Ik¼1 þ b2Ik¼2

þ g1;1Ij¼1;k¼1 þ g1;2Ij¼1;k¼2 þ g2;1Ij¼2;k¼1

þ g2;2Ij¼2;k¼2;

(5)

with I being the indicator function.
By writing the log-likelihood of the pooled data and

repeating the steps taken in the univariate case, we obtain
the MLE as the standard convex form,
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minimize
q!;p!

2  
X
j;k

�
n0;j;k log

�
pj;k 2 qj;k

�þ n1;j;k log qj;k

þmj;k logpj;k
�

subject to
X
j;k

qj;k ¼ K;

X
j;k

pj;k ¼ 1;

(6)

with qj,k = p1|j,kpj,k. Now the full parameter space is of di-
mension 17 (again, population assumptions will reduce this
dimension). The same optimizers used for solving problem
(4) can be used for problem (6) to fit thousands of pairwise
models per second. While on a single personal computer this
may still be too computationally demanding for a genome-
wide exhaustive pairwise search with its billions of candi-
dates, we show in Results that this approach can be combined
with a filter such as the fast methods mentioned in the In-
troduction. An appropriate filter rapidly generates a ranking
of all pairs according to a score that is roughly related to the
likelihood-ratio statistic of interest. Subsequently, millions
of top-ranking candidate pairs can be processed with our
approach, and the whole analysis takes ,1 hr in the case of
the WTCCC data.

The flat model, jflatj;k ; is again trivially solved by

m ¼ K; pj;k ¼
nj;k þmj;k

nþm
:

Incorporating distributional assumptions

The nonparametric tests described above (where the spec-
ifications of p! and p! are saturated with respect to the in-
cluded SNPs) are consistent against all forms of dependence
and genotypic distributions. However, when additional
assumptions can be made about the nature of plausible
effects and distributions, the space of underlying estimated
parameters is reduced, and testing can become more effi-
cient (Song and Nicolae 2009; Zheng et al. 2012). A consid-
erable amount of attention has been given in the literature
to developing such testing approaches. Some of the most
widely used assumptions for simplifying p! are allelic, dom-
inant, recessive, and additive SNP effects (Sasieni 1997;
Freidlin et al. 2009), which can be tested with the afore-
mentioned nonparametric approaches similarly to standard
ones, i.e., by using transformed genotypes or treating them
as continuous (Zheng et al. 2012).

As for population assumptions that constrain the param-
eter space for p, two popular and broadly applicable ones
are HWE (the independence of maternal and paternal allele
values that make up each SNP) and LE (the independence
of the two loci that make up a pair) (Yang et al. 1999;
Chatterjee and Carroll 2005; Zhao et al. 2006). Although
such assumptions have their limitations (Albert et al. 2001;
Mukherjee and Chatterjee 2008), HWE can be expected to
hold for homogeneous populations, and LE is plausible in

the case of distal locus pairs, i.e., almost all pairs considered
in a typical GWAS (Chen and Chatterjee 2007; Song and
Nicolae 2009). Consider, for example, the pairwise case. Un-
der LE, pj;k ¼ p

ð1Þ
j p

ð2Þ
k ; where pð1Þ and pð2Þ are the marginal

distributions of x1 and x2 genotypes in the population, re-
spectively. This assumption reduces the dimension of the
parameter space (and the degrees of freedom of the GLRT)
by 4. Further, under HWE at x1, suppose the minor allele
frequency is f1; then we have that p

ð1Þ
0 ¼ ð12f1Þ2;

p
ð1Þ
1 ¼ ð12 f1Þf1;  pð1Þ

2 ¼ f 21—eliminating an additional pa-
rameter. Assume HWE at x2 has the same effect (with
the minor allele frequency f2 parameterizing p(2)). Thus
problem (6), for example, simplifies to

minimize
q!;f1;f2

   2 
X
j;k

�
n0;j;k log

�
pjð f1Þpkð f2Þ2 qj;k

�

þ n1;j;k log qj;k þmj;k log
�
pjð f1Þpkð f2Þ

��

subject to
X
j;k

qj;k ¼ K:

(7)

Other methods and design of simulation study

Assuming known population parameters: Since population
data contain only information about population parameters,
it is interesting to compare in our simulation study the
performance of the GLRT based on problems (4), (6), and
(7) to an unrealistic test, where the genotype frequencies
are known (or, under HWE, and under LE for the pairwise
case, where the minor allele frequencies are known). This
represents a theoretical upper bound on performance when
infinitely many population samples are available. In the
univariate case, for example, one has to maximize with
respect to p! the log-likelihood:

l
�
n!; p!� ¼

X
i;j

ni;j log
�
pij j

pj

K

�
}

X
i;j

ni;j log
�
pijj

�
: (8)

This is already a concave optimization problem with the
affine equality constraint

X
j
p1jjpj ¼ K;

and box constraints, and as such can be handled efficiently.
Treatment of the multivariate case is similar.

The existing naive approach: A simple way of testing
for association, while exploiting an extraneous population
sample, is to include the samples P as additional controls
and perform standard association testing on the resulting
extended case–control sample, denoted C+. This approach
is taken, for example, in the univariate “expanded reference
group analysis” of the WTCCC study (Burton et al. 2007)
(although there are some additional issues to consider in
that context, as we discuss in Results). While this approach
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mislabels as controls any cases that exist in P, leading to
a potential loss of power, this loss will be small for a rare
disease. Also, the mislabeling of true cases in P acts as an-
other (independent) source of noise, meaning that tests that
are valid on C are also valid when applied to C+ and do not
suffer increased type I error. Finally, the simplest approach
ignores the extraneous population data altogether, keeping
to C alone.

To represent existing testing methods, we consider four
popular approaches. The first approach is standard case–
control analysis, which is represented by the logistic GLRT
contrasting the saturated and flat models of Equation 5. This
test is also known as a “G test” of independence in the two-
dimensional contingency table formed by y3 x!: For univar-
iate testing this table is 2 3 3, while for pairwise testing it is
2 3 9. This table may be compiled either from C or from C+.
This test does not exploit the HWE and LE assumptions, nor
does it make use of the known prevalence of disease. It is
worth noting that the commonly used Pearson chi-square
test is an asymptotic approximation to the G test. We refrain
from using the chi-square test because it generally gives less
accurate P-values at the far tails that are of interest in pairwise
testing. The second approach is that of Chen and Chatterjee
(2007). It applies to the univariate case only and assumes
HWE among controls (and therefore, for rare disease, approx-
imately HWE in the population).

The two remaining approaches are relevant only for the
pairwise testing scenario. In the case-only 3 3 3 GLRT, one
uses the contingency table for x1 and x2 in cases only. Thus
using C+ (which has the same cases, but more controls) for
compiling the table provides no benefit over using C. This
test assumes LE among the controls population (or in the
general population, under a rare disease assumption) and
ignores any marginal association signal (Piegorsch et al.
1994; Song and Nicolae 2009). While this test is a popular
approach to harnessing the LE assumption, by definition, it
cannot benefit from including extraneous population sam-
ples as additional controls. We therefore consider the re-
lated “three-way independence” 2 3 3 3 3 G test, which
uses the full three-dimensional case–control contingency ta-

ble y 3 x1 3 x2. This test assumes LE in the population
under the null of no association, but not under the alterna-
tive, thus wasting degrees of freedom on modeling a depen-
dence between the SNPs. If the disease is rare, then the
degrees of freedom invested in modeling the dependence
between the SNPs among controls go to waste as well, as
this can capture only spurious dependence signals. Contrary
to the case-only test, the three-way independence test is
sensitive to marginal effects.

Design of the simulation study: The association testing
methods described above are summarized in Table 1. The
methods differ in the assumptions they make and are further
classified as (i) ignoring P and using C only as done in most
GWAS to date, (ii) extending C by including P as if they
were additional controls (denoted C+), or (iii) correctly an-
alyzing all samples [referred to as (C, P) analysis]. The
“known Px” and case-only G tests are applied only to C (since
the former cannot benefit from population samples, and the
latter ignores any control data), and the case–control and
three-way G tests and the method of Chen and Chatterjee
(2007) are applicable either to C or to C+. The CMLE test
can be applied to C and C+ and is the only method that can
be applied to (C, P).

Several problem parameters affect testing performance,
notably samples sizes,

n0 ¼
X
i¼0;j

ni;j; n1 ¼
X
i¼1;j

ni;j; m ¼
X
j
mj

(here for the univariate testing scenario), and the true
values of K and p, the latter possibly including deviation
from LE and HWE.

As the basis for simulated alternatives (i.e., nonnull set-
ups) in the univariate case we use the six partitions of the
three genotypes in two risk levels: an “at risk” set of geno-
type values G1 vs. a “protected” set G0. These models include
the recessive, dominant, and heterozygous partitions (e.g.,
recessive minor-at-risk: G0 = {0, 1}, G1 = {2}). An “effect
size” parameter is defined, which governs p1jj2G1 2 p1jj2G0 ;

Table 1 Summary of testing approaches

Name Description

Case–control G The 2 3 d GLRT of the phenotype y and a genotype (or a pair of genotypes) treated as a d = 3 (or d = 9)
category variable.

Chen and
Chatterjee G

The univariate case–control Wald test assuming HWE among controls (Chen and Chatterjee 2007).

Case-only G The pairwise 3 3 3 GLRT examining the dependence between genotypes x1 and x2 among cases (y = 1).
Three-way G The pairwise 2 3 3 3 3 GLRT, testing for three-way independence of genotype x1, genotype x2, and

the phenotype.
Known Px The (unrealistic) GLRT based on Equation 8, where marginal/pairwise SNP distribution and the prevalence

are known.
CMLE The GLRT based on Equation 4 (for a single SNP) or Equation 6 (in the pairwise case), assuming known

prevalence.
CMLE HWE LE Same as CMLE above, but also assuming HWE and LE.

In boldface type are the novel tests that are introduced in this article. “Known Px” is unrealistic and merely represents a theoretical upper bound on
the benefit of exploiting population samples. The remaining tests represent existing approaches.
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the difference in risk levels between the two groups. Risk
levels themselves for G1 and G0 are determined from the
remaining parameters.

The minor allele frequency (MAF) is taken uniformly
from [0.05, 0.5]. This mimics the prior distribution typical to
data genotyped using SNP array technology (Waye 2005).
We repeat the simulations with prevalence of disease K 2
{0.05, 0.1, 0.2, 0.4} spanning the common disease spec-
trum, e.g., bipolar disorder to hypertension to obesity. Sam-
ple sizes are fixed at a balanced n0 = n1 = 1000, and we
assume a modest m = 5000 independent population sam-
ples are also available. Nominal test levels are set according
to the 0.05 Bonferroni correction for the number of loci in
the study, M, assuming throughout M = 300,000.

In the pairwise GWAS scenario, we focus on studying
association while allowing for interaction, as in Equation 5.
Because in this case we are not testing directly for a “pure”
interaction, marginal associations (“main effects”) alone can
lead to a successful discovery. A pairwise GWAS is typically
preceded, however, by a univariate study (see, for example,
the classification in Liu et al. 2011 to marginal, conditional,
and pairwise testing), and this makes pairs with marginally
detectable SNPs less interesting. We thus perform a marginal
association test at both loci and remove simulated data sets

from consideration if either univariate test leads to a success-
ful detection. In other words, what is measured is the power
of the tests, conditional on not having a marginally detect-
able signal.

As in the univariate case, we use as alternative hypothesis
setups all the possible partitions of the 3 3 3 pairwise SNP–
SNP covariate space into two risk levels. These models are
the same as the fully penetrant models of Li and Reich
(2000), which have been used in multiple GWAS simula-
tions (Evans et al. 2006; Song and Nicolae 2009; Wan
et al. 2010), except that we admit partially penetrant models
by controlling the risk levels. The MAF changes indepen-
dently for each SNP, and we use the same sample sizes as
in the univariate simulation described above. The nominal
test level in the pairwise case is adjusted for all M(M 2 1)/2
locus pairs.

Results

Simulation study

An extensive simulation was performed to compare the tests
from Table 1 on the basis of statistical power to detect uni-
variate associations and pairwise interactions under various

Figure 1 Univariate power simulation. Power is averaged across univariate models with two risk levels. AUC is area under ROC curve, a measure of
detection difficulty (see main text). A–D show results for prevalences (K) 0.05, 0.1, 0.2, and 0.4, respectively.
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disease models. Additional simulations compared perfor-
mance under deviation from the modeling assumptions.

Power analysis: We first examined the performance of the
methods in the single-SNP scenario. Power is averaged over
all models described in Methods and presented in Figure 1.
The horizontal axis is chosen to objectively reflect problem
difficulty—the true area under the curve (AUC) is the prob-
ability of the penetrance of a randomly chosen case being
higher than that of a randomly chosen control (Jostins and
Barrett 2011). It is immediately evident that, as expected, the
unrealistic approach that uses an oracle for the marginal SNP
distribution is uniformly most powerful among the methods
compared. The least powerful approach in all scenarios ex-
cept K= 0.4 is the one most often used in actual studies—the
case–control analysis that ignores any population samples.
Even with a modest population sample, naive use of these
data can greatly improve detection power when K is small.

For higher prevalence of disease, however, the effect of
mislabeling cases in the population sample as if they were
controls becomes more evident, until for K = 0.4 this makes
all methods using this approach substantially inferior to ig-
noring the population sample altogether. Exploiting HWE in
controls pays off for low K. This is also expected, since when

the disease is relatively rare, the HWE that holds in the
population also holds approximately among controls. For
K = 0.4 this is no longer true, and it is better to perform
the standard case–control test.

The inclusion of four variants of our proposed CMLE test,
combined with the selection of existing tests, allows us to
examine the individual benefits obtained by the two ingre-
dients of our approach, namely, correct handling of pop-
ulation samples and use of the HWE assumption. For low
prevalence of disease, there is little to gain from the correct
(C, P) analysis, but HWE (and use of the known K) provides
a consistent modest edge. Comparing in this case CMLE HWE
to the approach of Chen and Chatterjee (2007), again we see
how there is little difference between assuming HWE in con-
trols and in the population. These differences, however, grow
with K, and the effect of each ingredient becomes apparent.
Finally, we note that the power of the most appropriate
test, CMLE HWE (C, P), is the highest of all the realistic
tests in all cases and quickly approaches the theoretical
upper bound of known marginals, which means the potential
benefits from the exogenous data are fully realized by our
approach.

Next we considered the pairwise GWAS scenario, where
we were first interested in the power gains under the HWE

Figure 2 Pairwise power simulation. Power is averaged across all materially different models as described in Li and Reich (2000) with our extensions (see
main text). The horizontal axis is defined as in Figure 1. (A and B) Under LE. (C and D) Under LD with r2 = 0.01. (A and C) Disease prevalence 0.05. (B and
D) Disease prevalence 0.2.
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and LE assumptions. Figure 2, A and B, summarizes the results
across all considered models. Supporting Information, File S1,
Figure S1, Figure S2, Figure S3, Figure S4 includes detailed
results for each Li and Reich (2000)-like model class. Given
that few interactions have been detected in all-pairs studies
(exhaustive or otherwise) conducted so far, interest liesmainly
in those setups where current methods have low power.
Incorporating available population samples or known para-
meters clearly offers substantial power gains for interac-
tion detection under many of the possible setups that fall in
the region of interest. Not surprisingly, the best approach is
again the unrealistic one, where the pairwise distribution is
known (or in this case of HWE and LE, the MAFs at both loci
are known). Here too, the performance of this approach
defines an upper bound for the realistic approaches, and the
important conclusion stemming from these results is that
the suggested CMLE test approaches this bound. Notably, the
gains from performing C+ or (C, P) analysis beyond standard
case–control C or case-only analysis are great, reaching seven-
fold power gain, averaged over all models (when power
increases from �0.1 of G (C) to �0.7 of CMLE HWE LE
(C, P) in Figure 2A). The differences between (C, P) and C+
are not as great, but become more substantial for higher prev-
alence values.

We repeated the simulation under a modest amount of
linkage disequilibrium (LD) (r2 = 0.01), applying only
methods that do not rely on the LE assumption. The results
were similar, but naturally some of the power gains in the
CMLE approach were attenuated, to the point it is clearly
superior to standard C+ analysis only for prevalence .0.1
(see Figure 2, C and D).

Sensitivity analysis: We compared the type I error of the
tests to quantify the effects of deviation from HWE and LE
assumptions. Figure 3 shows type I error rates for the pair-
wise scenario with n0 = n1 = 1000, m = 5000, and the MAF
at both loci held at 0.3. In Figure 3, left, there is HWE, and
the degree of LD between the loci, measured by Pearson’s
product-moment correlation coefficient squared, is varied.

In Figure 3, right, LE holds but there is a varying degree
of Hardy–Weinberg disequilibrium (HWD) (measured again
by the squared correlation, here between the two alleles at
the same locus). In all tests, the nominal type I error rate is
set to 0.05.

As long as modeling assumptions are met, all tests
maintain the nominal level as expected. In accordance with
similar past observations (Albert et al. 2001; Mukherjee and
Chatterjee 2008), methods that rely on LE, namely, the case-
only, three-way independence, and CMLE LE tests, are sen-
sitive to this assumption and quickly break down under LD.
Of these methods, CMLE is the most robust to departure
from LE. The sensitivity to deviation from HWE is high as
well. This calls for discretion when applying such tests and
for use of the general CMLE in the case of doubt regarding
the validity of assumptions. As mentioned in the Introduc-
tion and as elaborated in the Discussion, the HWE and/or LE
assumptions will often be applicable for random sampling in
homogeneous populations and for distal pairs; however, it is
good practice to perform replication analysis with tests that
do not make these assumptions to minimize the chance of
a false discovery.

Application to the WTCCC study

The proposed CMLE tests were used to analyze the data sets
from the WTCCC study (Burton et al. 2007). The WTCCC
data contain independent case cohorts for seven common
diseases: bipolar disorder (BD), coronary artery disease
(CAD), hypertension (HT), Crohn’s disease (CD), rheuma-
toid arthritis (RA), type I diabetes (T1D), and type II diabe-
tes (T2D). Each case cohort is on the order of 2000
individuals, and an additional shared cohort is available
with �3000 population controls (i.e., controls were not
screened to exclude cases of the seven diseases). Each in-
dividual was genotyped at �500,000 SNP loci, which after
standard quality control (QC) reduces to �350,000 loci. For
pairwise testing we follow the recommendations from Liu
et al. (2011) and further filter out SNPs with MAF , 0.1,
leading to �300,000 loci.

Figure 3 Type I error under deviation from assumptions. Left, LE; right, HWE. r is the allelic Pearson correlation coefficient (for LD, between any allele in
x1 and any allele in x2; for HWD, between the two alleles of the same SNP, with both SNPs simulated to have the same degree of HWD for simplicity).
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In the main analysis undertaken by the WTCCC (Burton
et al. 2007), each case cohort is analyzed separately against
the shared controls, when the latter are treated as pure
controls rather than population controls. This simplifies
the work and is a reasonable approximation since the prev-
alences of the (sometimes nonstandard) phenotype defini-
tions considered by WTCCC are not high [the prevalences
for the seven phenotypes often quoted for the relevant UK
population vary between 0.001 and 0.15, but the most com-
mon phenotypes, such as HT, are actually defined in the
WTCCC study as extreme cases of HT, leading to lower prev-
alence (Burton et al. 2007)]. This approach is essentially
a C+ analysis with zero pure controls. In the expanded ref-
erence group analysis (ERGA), to increase power, Burton
et al. (2007) extend the controls set for any one disease,
using the cases from remaining diseases that are thought
to be unrelated (autoimmune diseases CD, RA, and T1D
are related and so are the cardiovascular phenotypes CAD
and HT). Because there is no guarantee that a case in an
unrelated data set is not also a case with respect to the
current phenotype, this too is a C+ analysis, using additional
population samples. Both analyses in Burton et al. (2007)
are univariate, but several other authors have since per-
formed interaction testing on these data (e.g., Emily et al.
2009; Liu et al. 2011; Prabhu and Pe’er 2012; Lippert et al.
2013).

The pairwise problem is less extensively studied, more
challenging, and according to the simulation results above
holds the greatest potential for benefiting from our meth-
odology. We therefore performed a pairwise analysis where
the shared controls and extending case cohorts were taken
as population samples. This is more appropriate almost ev-
erywhere in the genome, except for loci associated with the
unrelated phenotypes—which we excluded. In addition, we
imposed the prevalence numbers obtained from UK health
organizations (Burton et al. 2007; Allender et al. 2012).

To speed up the processing of the seven data sets, pairs
were first filtered using the software package PIAM (Liu
et al. 2011), such that SNPs with significant association sig-
nals at the univariate Bonferroni level were removed. Then
pairwise testing was performed over all remaining SNPs that
show some marginal signal (P , 0.1), using an optimized
implementation of the unconstrained G test applied to C+
(see Methods). The 100,000 pairs with the smallest P-value
from this analysis that are also well separated (at least 5
Mbp away) were further analyzed by our CMLE HWE LE
approach. The entire process was completed in �30 min
per data set on a modern personal computer (using an ex-
haustive pairwise search filter is feasible as well and adds
several hours of running time per data set).

Overall, across six of the seven diseases, 736 pairs were
detected that are significant at the pairwise Bonferroni level
(�10212, varying slightly between data sets) and contain
distal SNPs. After filtering pairs with SNPs that are margin-
ally significant at the univariate Bonferroni level according
to the univariate CMLE HWE test (which as we have seen

above has more power than the C+ G test used in the PIAM
filter), 9 pairs in four diseases survive. Seven of these pairs, in
three diseases, were not implicated by the original WTCCC
study (defined as both SNPs being at least 1 Mb away from
any WTCCC significant association). These results are sum-
marized in Table 2. Table 3 briefly highlights some of the
most promising pairwise findings overall, and Figure 4 and
Figure 5 give the underlying contingency tables and esti-
mated odds ratios for a few of these top pairs. The detailed
listing of all results is provided in File S1, and a short discus-
sion for each disease is given next.

BD: Although no significant pairs were detected at the
(somewhat arbitrary and probably quite conservative)
Bonferroni level (1.09 3 10212), it is interesting to note that
the pair ranked first (rs9865654, rs17600642), with a pair-
wise P-value of 1.13 3 10212, has a leg on chromosome 10
(rs17600642), which was not detected in the ERGA, but has
been noted more recently (Jiang and Zhang 2011). Because
of our more stringent filtering, our data do not include
rs10925490 (MAF � 0.06) and thus the pair identified by
Prabhu and Pe’er (2012).

CAD: The immediate regions of the SNPs composing the
topmost pair (rs5007171, rs2329902) have not been reported
in past GWAS results [according to the GaP and dbGaP
catalogs (Mailman et al. 2007)], but because rs5007171 has
a strong marginal signal (P-value of 7 3 1026), it is possible
that this result is due to a marginal association here. Many of
the following ranked pairs also include rs5007171 and are
thus suspect as well. On the other hand, a noteworthy signif-
icant pair with weak marginals is (rs16905928, rs3781575)
which repeats with small SNP location shifts. This pair shows
a mostly recessive–recessive effect; see Figure 4.

CD: The highest ranked pair (rs962087, rs7028357) appears
to be a dominant–dominant association (see Figure 4),
where neither SNP has a known association with any disease.
The pair ranked second (rs7554511, rs11945978) involves
SNPs not implicated in the WTCCC study, but a proximal
locus of rs7554511 (rs11584383) was found later to be
strongly associated with CD in a larger study (P-value of
10211) (Barrett et al. 2008), in which the WTCCC data were
combined with additional sources. This pair is notably also
detected as a significant pairwise association in Liu et al.
(2011), where it is the only pair that is found to be a strictly

Table 2 Significant pairwise findings in WTCCC

Disease BD CAD CD HT RA T1D T2D

Significant pairs 0 134 3 576 12 8 3
With weak marginals 0 2 3 0 2 2 0
Implicating novel loci 0 2 3 0 2 0 0

Pairs with weak marginals are defined as pairs where both SNPs have univariate
CMLE P-values larger than the relevant univariate Bonferroni significance level.
Novel loci are defined as pairs where both SNPs are .1 Mb away from any asso-
ciation reported in the original WTCCC study.
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significant association. Liu et al. (2011) thoroughly analyzed
this interaction and have in fact validated it in an indepen-
dent data set (IBDGC-non-Jewish, which is also a part of the
data used in Barrett et al. 2008). Both rs7554511 and
rs11945978 have already been suggested as marginal asso-
ciations in Barrett et al. (2009) (which studied ulcerative
colitis, a closely related condition) and Duerr et al. (2006)
(studying CD), respectively. Pairs composed of respectively
neighboring SNPs have small P-values as well and cor-
roborate the association signal (although none are strictly
significant).

HT: While the original (univariate) WTCCC study did not
produce any significant findings, hundreds of alleged associ-
ations are detected in our pairwise analysis. Examining these
associations more closely, it seems that all of these are in fact
due to a few marginal associations that are just below the
univariate Bonferroni threshold. One such association is
represented by rs17509005, which repeats in many pairs. It
is probably more accurately captured by rs11047543, which
has been implicated more recently in Pfeufer et al. (2010)
with a P-value of 10212.5, or by rs17287293, described in
Eijgelsheim et al. (2010) with a P-value of 1029.7. This mar-
ginal association comes up only as a moderate signal (1025),
using standard univariate testing of the WTCCC ERGA, but
comes up stronger in our results (1026).

RA: The first pair here is (rs1605705, rs6831911), showing
a dominant–dominant deleterious effect (Figure 5, top);
both SNPs are not mentioned in the WTCCC study results.
rs1605705 is noted as a moderate association in dbGaP. The
second pair (rs894848, rs6427122) has the dominant–
dominant pattern again (see Figure 5, bottom). These SNPs
were not found by the WTCCC analysis as well, but more
recently rs864537, which is,1 Mb from rs6427122, has been
implicated in RA (P-value of 10210.7) (Stahl et al. 2010).
Another strong marginal proximal association is rs840016
(Zhernakova et al. 2011).

T1D: Significant pairs in this data set can be attributed to
marginal signals, mostly in rs1377748. The pair (rs2077749,
rs10849946) is proximal to a region found on chromosome
12 in the original study; however, careful examination
indicates that this is a separate association discovered more

recently in two studies applying different methods to
the WTCCC data (rs1265564 in Huang et al. 2012 with
a P-value of 10216 and rs3184504 in Plagnol et al. 2011 with
a P-value of 10237).

T2D: Of the three significant pairs, both SNPs making up
the first pair are also implicated in the WTCCC ERGA.
The remaining two pairs are due to a marginal effect in
rs962087.

Discussion

Existing tests used in GWAS are often not powerful enough
to detect modest associations given the available sample
sizes. Specifically, the search for effects that are statistically
significant only when considering multiple loci jointly is an
important ongoing effort that has so far produced very few
replicable results. We introduce a powerful new approach
for univariate and multivariate testing that is based on
constrained maximum-likelihood estimation. Our method
makes efficient use of extraneous population samples in the
context of case–control, case–population, and case–control–
population studies of complex human disease. The un-
derlying modeling approach has the important capability
to exploit population assumptions, such as HWE and LE of
constituent SNPs.

The resulting association testing approach is quite flexible
and shown through extensive simulation to be valid and
powerful for a wide range of problem settings. The successful
application of our approach to the WTCCC study data demon-
strates this as well and shows in particular that an efficient
pairwise analysis can uncover novel associations that, when
approached by marginal testing, are visible only in larger
samples (if at all). These results have an immediate implication
for disease association studies in general—most studied popula-
tions have samples that are easily accessible to researchers and
that can now be utilized to substantially improve power of stan-
dard testing approaches. The increasing number and richness of
genetic data sources such as those mentioned in the Introduc-
tion will make the suggested approach only more relevant.

A critical examination of past results, especially from
pairwise analyses, raises many suspicions regarding reported
discoveries: there is strong reliance on sparse data due to low

Table 3 Promising pairwise associations in WTCCC

Phenotype SNP1 SNP2 P1 P2 PCO PCMLE

BD rs9865654 3p25.2 rs17600642 10q22.1 7.64 3 1024 1.04 3 1026 2.66 3 1026 1.13 3 10212

CAD rs16905928 10p12.31 rs3781575 11p13 6.15 3 1023 1.30 3 1025 5.12 3 1029 1.83 3 10213

CD rs962087 5p14.1 rs7028357 9p24.1 3.83 3 1024 3.24 3 1025 2.11 3 1028 1.28 3 10213

CD rs7554511 1q32.1 rs11945978 4p12 1.10 3 1026 4.93 3 1026 1.01 3 1024 4.17 3 10213

RA rs1605705 3p26.1 rs6831911 4q34.3 3.58 3 1025 5.28 3 1027 1.73 3 10210 2.78 3 10218

RA rs894848 1p13.2 rs6427122 1q24.2 1.18 3 1024 2.04 3 1025 2.57 3 1027 3.18 3 10213

We selected pairs that achieved or came close to achieving genome-wide significance at the 0.05 pairwise Bonferroni level, that have weak marginal signals, and that appear
to be novel associations when compared to the discoveries of the original WTCCC study (Burton et al. 2007). P1 and P2 are P-values for the univariate CMLE HWE test for
SNP1 and SNP2, respectively; PCO is the P-value for the (pairwise) case-only test; and PCMLE is the P-value for the pairwise CMLE HWE LE test. Strictly significant P-values are in
boldface type.
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MAFs (Lippert et al. 2013) or LD (Brinza et al. 2010; Wan
et al. 2010; Lippert et al. 2013) or on SNPs showing traces of
a range of genotyping errors (Cordell 2009; Brinza et al.
2010; Liu et al. 2011), as well as a host of other problems.
Although there are certainly other explanations (Marchini
et al. 2005), this could help account for the low replicability
of such association results. We reiterate the conclusions of Liu
et al. (2011), who have identified similar problems in other
studies. They suggested that quality control for pairwise
analysis be stricter than for univariate GWAS, and we have
implemented such control in this study. Another issue that
contributes to the difficulty of replicating pairwise associa-
tions is due to the unconstrained search space employed by
most studies. The present article is part of a larger body of
work that attempts to improve the situation by restricting the
search for multilocus associations to more biologically plau-
sible ones (Chatterjee and Carroll 2005; Wang and Sheffield
2005; Chen and Chatterjee 2007; Song and Nicolae 2009;
Han et al. 2012; Luss et al. 2012). Various combinations of the
constraints considered by others and those described here are
reasonable, and while it is straightforward to apply them to
data, asymptotic theory to support fast testing is not always
available.

Many of the limitations discussed in Liu et al. (2011) are
relevant to our approach as well. It is worth noting a few
limitations specific to the additional assumptions taken here.

One issue is that joining samples from different sources of-
ten requires stratification adjustment, which we expect to
address in future work. Another issue noted by various
authors is the high sensitivity of tests based on HWE and
LE to departure from these assumptions (as is also evident in
our simulations), and ways of mitigating this sensitivity have
been suggested (Albert et al. 2001;Mukherjee and Chatterjee
2008). Indeed, a prudent step following discoveries arising
from our analysis is to confirm them on independent data,
using an unconstrained test. On the other hand, additional
simulations (results not shown) imply that the sensitivity of
the suggested approach to misspecification of disease preva-
lence is low, which is important when accurate estimates are
not available, for example in populations of developing
countries.

While we have focused on univariate associations and on
pairwise associations allowing for interaction, let us stress
two points. First, the methods described are equally applica-
ble to SNP subsets of arbitrary order. Second, the literature is
rich with other formulations for the genetic interaction
problem, and many of them plug naturally into our approach
as well. For example, our framework also allows conditional
association and pure interaction tests that (similarly to the
case-only test) attempt to identify interactions that cannot be
due to combinations of marginal effects alone (Cordell 2009;
Liu et al. 2011). This task is significantly more challenging

Figure 4 WTCCC promising pairs (part 1). Shown are contingency tables and odds ratios estimated using CMLE HWE LE for promising pairwise
associations in CAD (top, OR truncated at 10 for presentation) and CD (bottom) data; see text for discussion.
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(that is, the optimization can be more difficult, and tests may
have less power), but we expect ourmethodswhen combined
with an appropriate filtering method such as that of Prabhu
and Pe’er (2012) to be more powerful than existing alterna-
tives in this context as well.

Finally, it would be interesting to examine the benefit of
using the methods suggested here in case–control studies of
late-onset diseases such as Alzheimer’s, because taking con-
trols in a study like this as known to be unaffected is sus-
ceptible to the same issues as using population controls.
Within our framework the “controls” of such studies can
be assumed to be a random population sample and handled
properly.
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Figures S1 through S4 give detailed results for the pairwise power simulations described in the main
text. The 50 two-SNP, two-risk-level base the 50 fully penetrant models of Li and Reich [2000]. These
models represent equivalence classes in the space of all 512 possible models, that are not degenerate and
cannot be received from one another using a set of fundamental operations such as 1’s complement and
order reversal. These include disease models considered by earlier literature [Neuman et al., 2005], such as:
recessive-recessive (model 1), dominant-dominant (model 27), recessive-dominant (model 3). Model 15 is
known a a modifying effect model, model 11 can be seen as a threshold model, model 27 is a XOR (exclusive
or) model. Models 7 and 56 are degenerate pairwise associations which are actually univariate.

Note: As described in the main text, a wide range of simulation setups was implemented for all settings
and models, but we then eliminated all setups where either marginal effects was detectable or where no
model had any power. Thus the plots are based on a varying number of “relevant” setups that were left for
each base model. We eliminated any plot where less than 20 relevant setups remained.
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Figure S1: Power simulation results under LE for 0.05 prevalence.
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Figure S2: Power simulation results under LE for 0.20 prevalence.
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Figure S3: Power simulation results under LD for 0.20 prevalence.
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Figure S4: Power simulation results under LD for 0.20 prevalence.
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