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ABSTRACT

Expression QTL (eQTL) studies involve the collection of microarray gene expression data and genetic
marker data from segregating individuals in a population to search for genetic determinants of
differential gene expression. Previous studies have found large numbers of trans-regulated genes (regulated
by unlinked genetic loci) that link to a single locus or eQTL ‘‘hotspot,’’ and it would be desirable to find
the mechanism of coregulation for these gene groups. However, many difficulties exist with current
network reconstruction algorithms such as low power and high computational cost. A common
observation for biological networks is that they have a scale-free or power-law architecture. In such an
architecture, highly influential nodes exist that have many connections to other nodes. If we assume that
this type of architecture applies to genetic networks, then we can simplify the problem of genetic network
reconstruction by focusing on discovery of the key regulatory genes at the top of the network. We
introduce the concept of ‘‘shielding’’ in which a specific gene expression variable (the shielder) renders
a set of other gene expression variables (the shielded genes) independent of the eQTL. We iteratively
build networks from the eQTL to the shielder down using tests of conditional independence. We have
proposed a novel test for controlling the shielder false-positive rate at a predetermined level by requiring
a threshold number of shielded genes per shielder. Using simulation, we have demonstrated that we can
control the shielder false-positive rate as well as obtain high shielder and edge specificity. In addition, we
have shown our method to be robust to violation of the latent variable assumption, an important feature
in the practical application of our method. We have applied our method to a yeast expression QTL data
set in which microarray and marker data were collected from the progeny of a backcross of two species
of Saccharomyces cerevisiae (Brem et al. 2002). Seven genetic networks have been discovered, and
bioinformatic analysis of the discovered regulators and corresponding regulated genes has generated
plausible hypotheses for mechanisms of regulation that can be tested in future experiments.

TECHNOLOGICAL advances in recent years have
given biological researchers access to genomic,

transcriptomic, proteomic, and other -omic data at an
unprecedented scale. Such data sources describe genetic
regulation on multiple levels, and mining this data offers
hope of unraveling complex genetic networks. For in-
stance, detailed observations about variation in gene ex-
pression as a function of natural sequence variation or
variation in experimental conditions can potentially be
analyzed to learn regulatory relationships among genes.

While genetic network prediction offers many bene-
fits, there are many computational and statistical chal-
lenges associated with network prediction from such
large data sets. The ‘‘large P, small N’’ problem is com-
pounded in network prediction because the number of
variables increases from P to P(P� 1) since in principle

directed edges can exist between any pair of variables.
Not only are there computational difficulties associated
with searching among the large space of possible
networks, but also there are statistical challenges asso-
ciated with being able to infer the correct network from
the large space of networks with a limited sample size.

Even with such seemingly insurmountable challenges,
various researchers have proposed methods for ge-
netic network discovery in genomic data sets. The first
application of network discovery techniques to genomic
data was in Friedman et al. (2000) in which Bayesian
networks were used to discover network structure in
a yeast cell cycle microarray gene expression data set.
The authors used the ‘‘sparse candidate’’ algorithm for
network discovery, which limits the number of possible
parents for each node and thus dramatically reduces the
size of the network search space. Even with this sim-
plification, a large number of high-scoring networks
could be found, making it impossible to find a single
‘‘correct’’ network. The authors chose to report a set of
high-confidence network features that were found in
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the majority of high-scoring networks rather than re-
port a single discovered network.

Other common sources of input data for the reverse
engineering of genetic networks include time-series
microarray data and data from perturbation experi-
ments. A new source of input is data from ‘‘genetical
genomics’’ or expression QTL experiments in which
marker and microarray data are collected from the
offspring of an experimental cross of two parental lines.
In these experiments, QTL analysis techniques are used
to find genetic loci that explain the variation in gene
expression observed in the progeny. It has been ob-
served that gene expression variables that link to a
common genetic locus are often functionally related
and/or coregulated and may represent modules in a
gene regulatory network.

Expression QTL data sets have been used for genetic
network discovery in several articles including Bing and
Hoeschele (2005), Li et al. (2005), Keurentjes et al.
(2007), and Neto et al. (2008). In most of these studies
(all but Neto et al. 2008), the investigators have limited
the possible parents for each variable to include only
those genes physically located in the confidence region
of a QTL, and heuristic methods are used to search
among the reduced space of possible models. In Neto

et al. (2008), existing Bayesian network algorithms are
used to create an undirected skeleton network from the
gene expression data, and information about multiple-
QTL sharing is used to direct these networks by
breaking ‘‘likelihood equivalence’’ among models with
different edge directionalities. Schadt et al. (2005)
demonstrated an application of expression QTL analy-
sis that allows for prioritization of potential gene can-
didates underlying certain diseases by performing a
joint analysis of clinical and gene expression traits and
their QTL linkage. The use of Bayesian networks in
conjunction with expression QTL studies to predict
potential genetic networks is also presented in Zhu et al.
(2004).

While these methods offer a good first step to genetic
network discovery from expression QTL data sets, many
research questions remain, including importantly the
confidence level with which networks or network
features are discovered. Additional questions include
whether simplifying assumptions made in network
construction are justified such as whether causal gene
expression variables are always found in the confidence
interval of the discovered eQTL and whether full and
efficient use of the data (i.e., the full variance–covariance
matrix of markers and gene expression variables) is
being made in all steps of the network reconstruction
algorithm.

Here we take a different approach to address the
statistical and computational problems associated with
the large P, small N problem. We recognize that the
search for the best network with such a large set of
variables when allowing for all possible networks is

impractical. However, a well-accepted empirical result
in the study of biological networks is that most networks
follow a scale-free or power-law architecture. In a scale-
free network, the degree of the nodes obeys the so-
called power law relationship,

PðkÞ � k�g; ð1Þ

where k is the number of edges (or degree) and g is a
parameter typically between 2 and 3. See Barabasi and
Albert (1999) for a more detailed description of scale-
free networks as well as some common examples. In this
type of network, a few highly connected nodes are
expected to be the most important regulators in the
network. In reconstructing a network with this architec-
ture, the most important goal is to discover the identity
of such ‘‘supernodes’’ since these are the major regu-
lators in the network.

Once these major regulators are discovered, a frame-
work network can be constructed that consists of these
primary regulators and the nodes being regulated by
each. Such a framework network could be obtained
more easily and with more confidence than the full
detailed network, even with a small sample size. This is
because scale-free networks naturally give high power to
detect highly connected supernodes: while the power to
detect any single edge is low, supernodes that have
numerous edges can be discovered if even a fraction
of their true edges are detected. Here we outline an
algorithm for genetic network discovery in expression
QTL data sets that takes advantage of the expected scale-
free architecture of genetic networks.

Our approach improves upon current work in genetic
network discovery in that we are able to discover major
network regulators with high confidence. In fact, we can
control the false-discovery rate of discovered regulator
genes. The control of the false-discovery rate is not seen
in most network reconstruction algorithms, and yet it
is needed for users to properly interpret discovered
networks. Of course genetic network discovery is a data-
mining technique used primarily for hypothesis gener-
ation, and discoveries made using our method still need
to be validated with controlled experiments to test
specific hypotheses.

METHODS

In this work we are concerned specifically with
expression QTL (eQTL) data sets, but our method
can be readily extended to any data set containing
genotypic data and phenotypic data of any kind. We use
Bayesian networks as a basis of our technique and thus
briefly introduce the theory here (adapted from
Spirtes et al. 2000).

A Bayesian network can be described as G ¼ (V, E),
where V represents a set of vertices or nodes in the
graph, and E represents the edges between those nodes.
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Under a certain set of assumptions (see appendix), the
probability distribution for the vertices V can be
decomposed as

PðVÞ ¼
Y
V 2V

PðV jParentsðV ÞÞ; ð2Þ

where Parents(V ) represent all nodes with edges di-
rected into the vertex V. The goal in Bayesian networks
is to find the network that best fits the observed data,
and many algorithms exist for learning the network
structure given a set of observations on the network
variables. We use as the basis of our method the PC
algorithm (Spirtes et al. 2000) with modifications made
specifically for the discovery of scale-free networks and
for the analysis of QTL data. The PC algorithm is a
conditional independence approach to network discov-
ery that starts with a fully connected network and then
iteratively ‘‘weeds out’’ edges by testing for conditional
independence of connected nodes when conditioning
on neighboring nodes with set cardinality of increasing
order.

The conditional independence of two variables or
nodes X and Y conditioned on another set of variables
or nodes C adjacent to X and Y (including the empty
set) is tested by first measuring the conditional correla-
tion coefficient and then performing a Fisher’s Z trans-
formation. The partial correlation coefficient of X and Y
conditional on C is calculated using the following
equation,

rXY jC ¼
rXY � rXC rCYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
XC

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

CY

q ; ð3Þ

where C is any member of C. Then the additional
members of C are added to the conditioning subset in a
stepwise manner using the following equation,

rXY jZ[R ¼
rXY jZ � rXR jZrYR jZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

XR jZ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

YR jZ

q ; ð4Þ

where R¼ C 2C, and members C are added until Z¼C.
The order of conditioning is arbitrary and does not
change the calculation. rX Ŷ jC is obtained by substituting
sample estimates of the correlation parameters into
Equations 3 and 4. rX Ŷ jC is tested for significance using
Fisher’s z transformation,

zðrX ŶjCÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3� jC j

p
ln
j1 1 rX Ŷ jCj
j1� rX Ŷ jCj

 !
; ð5Þ

where jCj is the number of nodes in C, and N is the
sample size.

Before we describe our approach, we introduce a
concept called ‘‘shielding’’ that is shown in Figure 1.
Suppose there is a single QTL and there are two gene
expression variables, 1 and 2, whose expression is

associated with the QTL. We refer to gene expression
variables as genes from here on for brevity. Further-
more, suppose that the edge between the QTL and gene
1 is found to be significant even when conditioning on
gene 2; however, the edge between gene 2 and the QTL
is found to be not significant when conditioning on gene
1. In this scenario, we can not only eliminate the edge
between the QTL and gene 2, but also direct the
remaining two edges. The edge between the QTL and
gene 1 must be directed toward gene 1 since a DNA
polymorphism may influence gene expression but not
vice versa. In addition, the edge between gene 1 and
gene 2 is directed toward gene 2, because this is the only
direction consistent with the conditional independence
relations found in the data (Spirtes et al. 2000). Here
we say that gene 1 ‘‘shields’’ gene 2 from the QTL or, in
other words, gene 2 is conditionally independent of
the QTL given gene 1. More generally, a shielder is
defined as a gene with a direct connection to a QTL,
and a shielded gene is defined as a descendant of the
shielder.

Specific method: Now we can describe our method,
which is a modification to the PC algorithm. The first
step in our approach is to perform QTL analysis on each
gene in the microarray data set. Then genes that share a
QTL are put into a group, and each of these QTL–gene
groups is used in the network reconstruction algorithm
to propose a method by which the QTL regulates the
genes in the group. Next the ‘‘find shielders’’ algorithm
is used to discover the network structure.

Find shielders algorithm:

1. Find skeleton network: Connect each pair of genes
with an undirected edge if that pair of genes has a
significant conditional correlation given all other
genes and the QTL. Specifically, make the edge
Gi�Gj for all i 6¼ j such that jrGiGj jGk;Q j . 0 for all k 6¼
i, j.

2. Count edges for each gene: Record the number of
edges for Gi as ni.

3. Find potential shielders among most highly con-
nected genes: If ni . t, where t is a predetermined
threshold (we use 5), add Gi to S.

4. Test potential shielders for direct connection to
QTL: For all Si 2 S, test jrQSi jSj

j . 0 for all j 6¼ i.
5. Order remaining shielders according to degree of

connectedness: Reorder S such that S1, S2, . . . , SjSjhas
n1 $ n2 $ . . . $ njSj.

Figure 1.—Illustration of shielding: Gene 1 is found to
shield gene 2 from the QTL.
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6. Orient edges from QTL to shielder to connected
genes: Loop for i ¼ 1: jSj:

a. Label the subset of G with direct connections to
Si as S9.

b. Create a directed edge from Si to each member of
S9 provided there is not already an edge directed
the opposite way.

c. Set S ¼ S9 and find a new S9 for each S in S.
d. Recursively repeat the previous two steps until

all sets S9 are empty or already directed.
7. Remove insignificant shielders: Count the number of

descendants of each S 2 S and test if it is above the
simulation-determined threshold (calculated in next
section). If not, remove all edges connecting S to
each of its descendants.

Threshold calculation: Because of the expected scale-
free nature of biological networks, we expect our al-
gorithm to result in just a few highly connected nodes.
Because Bayesian network inference of such a large
network from noisy microarray data is expected to yield
many false-positive edges, we propose a test to identify
true shielders when taking into account a large number
of false edges. Our hypothesis is formulated as follows.

Suppose our discovered network has nnodes and nedges

and there is a putative shielder S that shields nshield genes.
The null hypothesis is that the number of genes with
connections to S is not unusual given a random distribu-
tion of nedges among nnodes, and since many of these
discovered edges may be false, the declaration of S as
‘‘highly connected’’ may also be false. The alternative
hypothesis is that the nshield connections to the shielder
are much larger than expected given a random assign-
ment of nedges edges to nnodes nodes, and even if a large
portion of those edges are found to be false, the
declaration of S as being highly connected would still
hold. Thus, to be considered significant, a shielder
needs to shield more than a threshold number of genes
in the network, where the threshold is calculated as
follows:

1. Calculate the total number of discovered edges and
connected nodes remaining after the execution of
the first step in the method (first-order conditional
independence testing of all pairs of genes) and call
these quantities nedges and nnodes, respectively.

2. For each shielder, calculate the number of shielded
genes, where a shielded gene is defined as a de-
scendant of a shielder, and call the number of
shielded genes for this shielder nshield.

3. Calculate the probability of obtaining a single shielder
with nshield shielded genes given the null hypothesis
that nedges edges are distributed randomly among the
nnodes genes in the network. We calculate this proba-
bility by creating an empirical null distribution by
randomly assigning nedges balls to nnodes bins many
times (1000) and recording the top 1 � a quantile of
the histogram.

4. For shielders whose number of shielded genes is less
than the 100(1 � a)% quantile of the histogram,
remove connections to all shielded genes.

We require that at least five edges be discovered to
calculate an empirical threshold. By focusing our
attention on the discovery of highly connected shielder
genes with direct connections to the QTL, we believe we
are finding high-confidence network features. Here we
are interested in constructing a ‘‘framework’’ network
rather than the full detailed network; specifically we are
constructing the ‘‘chain of command’’ or flow of infor-
mation from the QTL to each of the regulated genes.
The use of only first-order conditional independence
tests is for computational and statistical power reasons;
see Magwene and Kim (2004) for a similar use of first-
order conditional independence testing. See Figure 2 for
a toy example to illustrate the find shielders algorithm.

RESULTS

eQTL analysis of a yeast microarray data set: The
yeast data set was analyzed using multiple-interval
mapping (MIM) as described in Zou and Zeng

(2009). Because our current network reconstruction
method allows only for single-QTL models, we used the
results of the first step of this method only, which is
forward selection of QTL for each gene expression trait.

Figure 2.—Illustration of the find shielders algorithm. (A)
Microarray gene expression variables (‘‘genes’’) labeled with
G’s are found to be associated with QTL Q. (B) First-order
conditional independence testing of each pair of genes on ev-
ery other gene and the QTL is performed, and significant
edges remaining are indicated. Highly connected genes that
are potential shielders are labeled with an S and colored or-
ange. (C) Potential shielders are tested for direct connection
to Q by conditioning the association on all other potential
shielders. Shielders that remain have directed edges drawn
from Q to S. (D) The number of shielded genes per shielder
is counted and tested for significance, and edges from shield-
ers found not to be significant are removed.
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To group closely linked eQTL, we divided the yeast
genome into bins to search for eQTL hotspots, which
are bins containing eQTL for many genes (as in BREM
et al. 2002). We used a sliding-window approach with a
bin size of 20 cM and a bin increment of 10 cM. Previous
analysis (Zou and Zeng 2009) shows that the average 1.5
LOD dropoff interval was 25 cM in this data set, so the
bin size we use roughly corresponds to the expected
95% confidence interval for each eQTL. Figure 3 shows
a plot of the number of genes with eQTL in each
bin across the genome. Several eQTL hotspots are im-
mediately apparent on chromosomes 2, 3, 5, 8, 12, 13,
14, and 15.

To test our genetic network discovery algorithm, we
chose to analyze eQTL hotspots with � $100 linked
genes because QTL with the most linked genes repre-
sent the most important hubs of transcriptional control.
Some relevant statistics about each gene group (eQTL
hotspot) are summarized in Table 1. The following
attributes are described for each eQTL: the position, the
average percentage of genetic variance explained by the
eQTL (R 2), the percentage of other genes linked to
each gene, and the average correlation among genes.
The number of linked genes is seen to vary from�100 to
.600, the average R 2 varies from 10% to 20%, the
average percentage of correlated genes (determined
using a 0.05 cutoff on Fisher’s Z score) varies from 63%
to 93%, and the average gene–gene correlation varies
from 0.24 to 0.56. Thus the eQTL are seen to be of large
effect, and the set of genes linked to each eQTL is seen
to be highly correlated. We attempt to mimic the basic
statistical properties of the gene groups defined by these
eQTL hotspots in constructing our simulated networks.

Simulations: Because we have developed a method
for discovering scale-free networks, we test the method
by simulating scale-free networks with the well-known
Barabasi and Albert ‘‘rich get richer’’ generative model
(Barabasi and Albert 1999) in which new edges are
added to specific nodes with probability proportional to
the current number of edges in those nodes. To test the
robustness of our method to the assumption of scale-

free networks, however, we also simulated random net-
works in which a given number of edges are randomly
assigned to a set of nodes. In addition, we also wished to
test the robustness of our method to the latent variable
assumption, which is the assumption that all variables
that are a common cause of two or more variables in the
true network are present in the data set. Since this
assumption is rarely true in practice, it is important to
test the robustness of our method to this assumption.
Thus we simulated networks in which 25% or 50% of
genes are randomly selected to not be included in the
data set, and in addition we simulated networks in which
all of the primary shielders (genes with direct connec-
tion to the QTL) are removed from the data set.

We simulated networks with 1000 genes with number
of edges equal to 250, 500, or 1000. The number of
genes directly connected to the eQTL (‘‘shielders’’) was
chosen to be 1, 2, or 3. The QTL–gene and gene–gene
regression coefficients were chosen to give QTL R 2

values and gene–gene correlation values similar to those
observed in the yeast data set. Different ranges of values
were examined, and ultimately the QTL–gene regres-
sion coefficients were drawn from a uniform distribu-
tion between 1.5 and 3, and the gene–gene regression
coefficients were drawn from a uniform distribution
between 0.5 and 1.5.

Note that although the number of network genes was
held constant at 1000, the number of genes linked to
the QTL was #1000. Since only genes with significant
association to the eQTL will be observed in the eQTL
data set, we use this number (number of linked genes)
as the size of the network, and this number varied
depending on the resulting connection of each gene to
the QTL in each simulated network. One hundred
networks were generated for each simulation scenario.
The basic statistics for the simulated scale-free networks
for each set of network parameters are shown in Table 2.
The average number of genes in each network family
varied from 161 to 519, the average R 2 varied from 18%
to 28%, the average percentage of correlated genes
ranged from 54% to 82%, and the average gene–gene
correlation ranged from 0.36 to 0.51. This range of
statistics roughly covered the range of statistics seen in
the yeast data set.

As Table 3 shows, the shielder false-positive rate is well
controlled below the set level of 5% for the random and
scale-free networks, and in fact in many scenarios none
of the 100 simulations resulted in the discovery of a false
shielder. Even when allowing for violation of the latent
variable assumption, the false-positive rate did not rise
too much above the 5% level. With 25% of the variables
missing, the 5% level is still maintained. With 50% of the
variables missing, there is one scenario with a slightly
.5% false-positive rate. Even with all primary shielders
removed, a very severe violation of the latent variable
assumption, the false-positive rate does not rise to
.10%. Thus it can be seen that our method results in

Figure 3.—Number of eQTL per 10-cM bin across 16 yeast
chromosomes.
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highly specific, accurate discovery of network regulators
in gene expression networks.

In Figure 4 we illustrate the specificity of our method
by giving the shielder, ancestor, and edge specificity for
simulated scale-free networks. The shielder specificity is
the percentage of discovered shielders that are true, the
ancestor specificity is the percentage of discovered
ancestor relations (descendants of discovered shield-
ers) that are true, and the edge specificity is the per-
centage of discovered edges that are true. It is seen that
our reconstruction is highly specific with extremely high
shielder specificity and reasonably high ancestor and
edge specificity as well.

Table 4 shows the power of our method to detect
shielders in terms of the percentage of simulated net-
works in which one or more true shielders were dis-
covered and the number of true shielders discovered
per network. Moderate power is achieved for recovering
at least one true shielder per network, although as the
number of shielders increases it becomes difficult to
recover them with a limited sample size. Figure 5 shows
the power of our method in terms of the number of

shielder edges discovered per discovered shielder. Our
method is able to consistently discover roughly half of
the shielder edges per discovered shielder over all of the
simulated scenarios.

Network reconstruction for yeast eQTL hotspots:
Seven networks were reconstructed from the 11 eQTL
hotspots analyzed using our algorithm (see Table 1). We
discuss four of these (in Figures 6–9), and the remaining
networks are found in supporting information, Figure
S1, Figure S2, and Figure S3. In addition, all network
genes and corresponding shielders are found in Table
S1 (graphical output is generated using Cytoscape, www.
cytoscape.org).

On chromosome 3 at 79,091 bp is an eQTL hotspot
for genes related to leucine biosynthesis; the discovered
network is shown in Figure 6. There is a known loss-of-
function mutation in LEU2 in one of the strains, and
LEU2 has been established as the causal cis eQTL
(Yvert et al. 2003). LEU2 is an enzyme in the leucine
biosynthesis pathway and is a target of the transcription
factor LEU3. Other genes in Figure 6 including LEU1,
BAT1, OAC1, and BAP2 are all established or potential

TABLE 1

Basic statistics for gene groups from several eQTL hotspots, including network ID, number genes in network,
average R 2 for gene–QTL association for network genes, average percentage of correlated network genes using

0.05 as a cutoff using Fisher’s Z test, and average gene–gene correlation

Network Chromosome bp Genes R 2

% correlated
genes

Mean
correlation

1 2 368,060 143 0.11 87 0.46
2 2 537,314 511 0.16 82 0.42
3 3 79,091 246 0.17 83 0.44
4 5 395,442 211 0.12 76 0.39
5 7 52,613 88 0.11 96 0.56
6 8 98,513 146 0.14 70 0.30
7 12 674,651 230 0.20 65 0.28
8 13 46,084 91 0.14 64 0.28
9 14 449,639 613 0.19 66 0.30

10 15 180,961 522 0.16 80 0.38
11 15 572,410 108 0.10 86 0.43

TABLE 2

Basic statistics of simulated gene networks given as an average over 100 simulations, including number of
shielders (genes with direct connection to the QTL), number of edges, number of genes in network, average

R2 for gene–QTL association for network genes, average percentage of correlated network genes using
0.05 as a cutoff using Fisher’s Z test, and average gene–gene correlation

Scenario Shielders Edges Genes R 2 % correlated genes Mean correlation

1 1 250 161 0.18 54 0.36
2 1 500 266 0.19 70 0.44
3 1 1000 458 0.19 81 0.50
4 2 250 170 0.23 56 0.37
5 2 500 287 0.25 71 0.45
6 2 1000 519 0.27 82 0.51
7 3 250 173 0.27 59 0.38
8 3 500 286 0.26 70 0.44
9 3 1000 512 0.28 81 0.51
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targets of LEU3 (see Table 1 in Kohlhaw 2003). LEU3
has been shown to be activated by a-isopropylmalate,
a product in the leucine biosynthesis pathway. With loss
of function of LEU2, there would be a buildup of
a-isopropylmalate in the susceptible strain that would
cause activation of the LEU3 transcription factor, which
could potentially generate production of more a--
isopropylmalate in a feedback loop. The discovered
shielder, LEU1, catalyzes the second step in the leucine
biosynthesis pathway, the step directly before LEU2, the
defective enzyme in the susceptible strain. Thus LEU1
could act as a shielder of the eQTL by modulating this
feedback loop (as a target of LEU3 and an activator of
LEU3 by catalyzing the production of a-isopropylmalate).
The relation of this eQTL hotspot to leucine biosynthesis

has also been noted in Yvert et al. [(2003); see their
Table S2, group 4] and in Sun et al. (2007) in which the
authors find indirect evidence for LEU3 activation
through joint analysis of eQTL and transcription factor
activity data.

For the eQTL on chromosome 7 at 674,651 bp (see
Figure 7), two shielders were discovered, UBX6 and
ERG20. UBX6 is annotated as a ubiquitin regulatory
X (UBX) domain-containing protein that interacts with
CDC48p, and its transcription is repressed when cells
are grown in media containing inositol and choline.
The genes shielded by UBX6 are enriched for the
GO biological process oxidation reduction (33.3% of
shielded genes vs. 5.7% in the reference Saccharomyces
Genome Database (SGD), P # 7.4�3) and for the GO
molecular function heme binding (22.2% vs. 0.5% in
reference, P # 1.5�6). The other shielder, ERG20, is an
enzyme involved in isoprenoid and sterol biosynthesis.

TABLE 3

Shielder false-positive rate measured as number of simulations (of 100) in which one or more false shielders
were discovered for simulated scale-free and random networks as well as for scale-free networks

under a variety of violations of the latent variable assumption

Scenario Scale-free Random Latent, 25% Latent, 50% Latent, no shielders

1 0 1 0 3 5
2 0 0 0 2 5
3 2 0 2 3 6
4 1 0 4 2 6
5 2 0 1 6 2
6 1 0 2 3 2
7 1 1 1 4 7
8 0 0 3 1 8
9 1 0 3 3 1

Latent, 25% indicates 25% of variables are randomly removed; Latent, 50% indicates 50% of variables are
removed; and Latent, no shielders indicates all of the shielders are removed.

Figure 4.—Specificity of simulated networks for various
network parameters. Shielder, ancestor, and edge specificity
are defined as the percentage of correctly detected shielders,
descendants, and edges, respectively, with error bars repre-
senting the standard error estimated from 100 simulations.
The simulation parameters for scenarios 1–9 are given in Table 2.

TABLE 4

Power to discover shielders measured as the percentage
of simulations in which one or more true shielders were
discovered and the number of true shielders discovered

per network compared with the total number of
true shielders per network

Scenario

Probability
$1 shielders

found

Discovered
true

shielders
True

shielders

1 59.0 (4.9) 0.52 (0.05) 1
2 58.0 (5.0) 0.47 (0.05) 1
3 55.0 (5.0) 0.33 (0.05) 1
4 69.0 (4.6) 0.68 (0.05) 2
5 62.0 (4.9) 0.60 (0.06) 2
6 52.0 (5.0) 0.46 (0.05) 2
7 69.0 (4.6) 0.63 (0.06) 3
8 71.0 (4.6) 0.62 (0.05) 3
9 58.0 (5.0) 0.46 (0.05) 3

The standard error estimated from 100 simulations is
shown in parentheses.
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Its shielded genes show a strong enrichment for biological
processes involved in sterol biosynthesis (for instance,
42.3% of shielded genes vs. 0.8% of reference genes are
involved in the sterol metabolic process, P # 3.4�15).
Yvert et al. (2003) also found enrichment for heme and
fatty acid-related genes at this hotspot (group 8).

The eQTL on chromosome 14 at 449,639 bp was
found to have two shielders: PNT1 and PET56. PNT1 is
involved in targeting of proteins to the mitochondrial
inner membrane and is a pentamidine resistance pro-
tein. The genes shielded by both PNT1 and PET56 show
strong enrichment for the biological processes mito-
chondrial translation (20.7% vs. 1.9% in reference, P #

1.7�10) and mitochondrion organization (29.3% vs.
4.9% in reference, P # 4.0�10). It seems plausible that
the expression of a protein involved in targeting
proteins to the mitochondrion could influence the
expression of proteins involved in mitochrondrion or-
ganization, and this hypothesis could be tested in follow-
up experiments. This eQTL hotspot in Yvert et al.
(2003) (group 11) is annotated as ‘‘mitochrondria’’ but
the mechanism for regulation is listed as unknown; thus
perhaps PNT1 and/or PET56 can help explain regula-
tion at this eQTL hotspot.

Finally, on chromosome 15 at 180,961 bp there is an
eQTL found to have HSP31 as the primary shielder. The
genes shielded by HSP31 are found to be enriched for
the biological process response to temperature stimulus
(15.4% vs. 0.7% in reference, P # 1.7e�2). HSP31 is a
heat-shock protein that is annotated as a possible
chaperone and cysteine protease and a member of the
DJ-1/ThiJ/PfpI superfamily, which includes human DJ-1

involved in Parkinson’s disease. In addition, many of the
network genes are targets of MSN2 and MSN4 (44.4%),
which are transcription factors activated in stress con-
ditions, an enrichment that was also noted for this
hotspot in Yvert et al. (2003) for group 12.

DISCUSSION

We have developed a robust method for the discovery
of genetic network regulators in expression QTL data
sets, although our method can be generally applied to
any data set with genotypic and phenotypic data. The
aim of our method is to identify the key regulators near
the root of the network and a set of genes regulated by
each of these shielder genes. By estimating a framework
network rather than a full network, we are able to draw
realistic inferences from the small sample size data sets
that we use as input. Considering the limited sample size
of our data sets (100) and the large number of network
genes (.600 for some networks), our algorithm suc-
ceeds in finding a large number of key network
regulators with high confidence. We have demonstrated
with simulation that we can control the shielder false-
positive rate below the 5% level of the test when our
model assumptions hold. We have even shown our
method to be relatively robust to violation of model
assumptions, with very little increase in the shielder
false-positive rate even with severe violations of the
latent variable assumption.

In application of our method to a yeast eQTL data set,
seven networks have been discovered. Bioinformatic

Figure 5.—Shielder edge sensitivity measured as the num-
ber of true shielder edges detected, for detected shielders,
compared with the total number of true shielder edges, with
error bars representing the standard error estimated from 100
simulations. The simulation parameters for scenarios 1–9 are
given in Table 2.

Figure 6.—Discovered network for network 3: eQTL on
chromosome 3 at 79,091 bp.
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analysis of these networks has generated plausible
hypotheses for mechanisms of regulation that can be
tested in follow-up studies. We have found agreement
between our method and previous eQTL studies,
although our algorithm was not able to discover net-
works for all important eQTL hotspots in this data set
(including those due to mutations in GPA1 and AMN1
in Yvert et al. 2003). While the specificity of our method
to detect network regulators (shielders) is high as shown

through simulation, the power can be modest, and thus
some networks may fall below our detection threshold.
Finding ways to increase the power without sacrificing
specificity is a major focus of future research.

Another important issue in network reconstruction is
the presence of latent variables. We approached this
issue through simulation of latent variables and testing
the resulting shielder false-positive rate, but the prob-
lem could be approached more directly through direct

Figure 7.—Discovered network for network 7:
eQTL on chromosome 12 at 674,651 bp.

Figure 8.—Discovered
network for network 9:
eQTL on chromosome 14
at 449,639 bp.
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modeling of the latent variables, using, for instance,
structural equation modeling techniques (Liu et al.
2008); this is another topic that will be pursued in future
research. Another interesting approach to incorporat-
ing latent variables is given in Sun et al. (2007) in which
specific transcription factor activity that is not directly
assayed in eQTL data sets is indicated through joint
modeling of eQTL and transcription factor activity data.
More generally, approaches for joint modeling of cross-
platform data sets will become increasingly important,
and extension of our method to more than two levels of
data and to different types of data such as proteomic,
epigenomic, or metabolomic data will allow for more
intergenomic data analysis for future genomics research.
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Figure 9.—Discovered network for network 10: eQTL on
chromosome 15 at 180,961 bp.

APPENDIX

As described in Spirtes et al. (2000), the assumptions
required for Bayesian network learning include the causal
Markov condition, causal minimality assumption, the
faithfulness assumption, and the causal sufficiency as-
sumption. The causal Markov condition states that in the
probability distribution P over V generated by causal
graph G, each variable or vertex is independent of its
nondescendants given its parents (see Equation 2).

Causal minimality requires that no proper subgraph of
G satisifes the causal Markov assumption. The faithfulness
assumption requires that every conditional indepen-
dence relationship true in the probability distribution P
over the vertex set V is entailed by the causal Markov
condition applied to G. Finally, the causal sufficiency
condition requires that any common cause of two or more
variables in V be in V or, in other words, that there are no
latent variables that are not included in the vertex set.
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FIGURE S1.—Discovered network for Network 1: eQTL on Chromosome 2 at 368,060 bp. 
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FIGURE S2.—Discovered network for Network 5: eQTL on Chromosome 7 at 52,613 bp. 
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FIGURE S3.—Discovered network for Network 8: eQTL on Chromosome 13 at 46,084 bp. 
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TABLE S1 

All network genes and corresponding shielders 

 

Table S1 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.124685/DC1. 
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