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ABSTRACT

The coalescent with recombination is a very useful tool in molecular population genetics. Under this
framework, genealogies often represent the evolution of the substitution unit, and because of this, the few
coalescent algorithms implemented for the simulation of coding sequences force recombination to occur
only between codons. However, it is clear that recombination is expected to occur most often within
codons. Here we have developed an algorithm that can evolve coding sequences under an ancestral
recombination graph that represents the genealogies at each nucleotide site, thereby allowing for
intracodon recombination. The algorithm is a modification of Hudson’s coalescent in which, in addition
to keeping track of events occurring in the ancestral material that reaches the sample, we need to keep
track of events occurring in ancestral material that does not reach the sample but that is produced by
intracodon recombination. We are able to show that at typical substitution rates the number of non-
synonymous changes induced by intracodon recombination is small and that intracodon recombination
does not generally result in inflated estimates of the overall nonsynonymous/synonymous substitution
ratio (v). On the other hand, recombination can bias the estimation of v at particular codons, resulting
in apparent rate variation among sites and in the spurious identification of positively selected sites.
Importantly, in this case, allowing for variable synonymous rates across sites greatly reduces the false-
positive rate and recovers statistical power. Finally, coalescent simulations with intracodon recombination
could be used to better represent the evolution of nuclear coding genes or fast-evolving pathogens such
as HIV-1.We have implemented this algorithm in a computer program called NetRecodon, freely available
at http://darwin.uvigo.es.

THE coalescent (Kingman 1982; Hudson 1990)
provides an efficient sampling of genealogical

histories from a theoretical population evolving under
a neutral Wright–Fisher model (Ewens 1979; Kingman

1982; Hudson 1990). Coalescent simulations are
commonly used in molecular population genetics to
understand the behavior and interactions among
evolutionary processes under different scenarios (Innan

et al. 2005), such as hypothesis testing (DeChaine

and Martin 2006), evaluation and comparison of dif-
ferent analytical methods (Carvajal-Rodriguez et al.
2006), or estimation of population genetic parameters
(Beaumont et al. 2002). Indeed, to obtain meaningful
biological inferences from these simulations, it is very
important that the underlying model is as realistic as
possible. In this regard, a number of models have been
developed during the last decade that consider dif-
ferent evolutionary processes such as recombination
(Simonsen and Churchill 1997; Wiuf and Posada

2003), gene conversion (Wiuf and Hein 2000), se-

lection (Hudson and Kaplan 1988, 1995), and gene
flow or demographic history (Slatkin 1987; Pybus and
Rambaut 2002).

Despite these advances, and in the face of a plethora
of coalescent simulators (Excoffier et al. 2000; Hudson

2002; Posada and Wiuf 2003; Spencer and Coop

2004; Mailund et al. 2005; Schaffner et al. 2005;
Marjoram and Wall 2006; Arenas and Posada 2007;
Hellenthal and Stephens 2007; Liang et al. 2007), it
was not possible until very recently to simulate recom-
bining protein-coding DNA sequences within this
framework (Anisimova et al. 2003; Arenas and Posada

2007). Importantly, to our knowledge, the algorithms
described or implemented so far allow recombination
only between codons, not within them. The reason for
this unrealistic constraint is that standard codon models
describe the probabilities of change along a lineage
from one codon to another (Yang 2006), whereas
recombination can occur between any two nucleotides,
potentially resulting in one or more lineages not being
shared by all the positions of the codon. In other words,
although the unit for substitution in coding sequences is
the codon, the unit for recombination in these sequen-
ces is still the nucleotide. Here we describe a new
algorithm that overcomes this limitation by allowing
for the evolution of different positions of the same
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codon in distinct genealogies. Furthermore, we use this
algorithm to evaluate the effect of intracodon recombi-
nation on the generation of nonsynonymous (NS) diversity
and on the estimation of the ratio of nonsynonymous-to-
synonymous substitution rates (v or dN/dS) (Li and
Gojobori 1983) and the hypotheses derived from it.

METHODS

Simulation of intracodon recombination under the
coalescent: The simulation of intracodon recombina-
tion occurs in two independent steps: the construc-
tion of the ancestral recombination graph (ARG)
(Griffiths 1991; Griffiths and Marjoram 1996,
1997) and the evolution of the coding sequences. The
first step is an extension of the standard coalescent m-
loci continuous-time model with recombination
(Kaplan and Hudson 1985). The novelty comes from
the fact that intracodon recombination, apart from
breaking the ancestral material in two segments as in the

case of intercodon recombination, also results in
ancestral material that never reaches the sample (Figure
1). Therefore, we distinguish between ‘‘sampled’’ and
‘‘unsampled’’ ancestral material, while in the standard
coalescent all the ancestral material appears in the
sample. Because sampled and unsampled ancestral
material can meet in the same codon, we need to be sen-
sitive to recombination and substitution events occurring
not only in the sampled ancestral material, as usual, but
also in the unsampled ancestral material. We also tried a
shortcut in which recombination events were allowed
only in the sampled material and obtained almost
identical results as with the full algorithm. However,
this simplified algorithm was discarded because it did
not reduce the computational costs much because, in
practice, recombination events within unsampled ma-
terial were very rare. Because we keep track of the
relationships between recombinant segments contain-
ing ancestral material, we are able to define at the end
the exact genealogy for each codon site, which we call

Figure 1.—Generation of ACGs for a coding sequence with three codons. (a) ARG for the whole sequence. Note that the
GMRCA of the sample is younger than the root. Inside each node we can see the ‘‘sampled’’ ancestral material (open blocks),
the ‘‘unsampled’’ ancestral material (shaded blocks), and the non-ancestral material (dotted lines). Vertical lines across the seg-
ments indicate recombination breakpoints. Three recombination breakpoints occur in the ARG: after the first and second posi-
tions of the first codon and between the second and third codon. The two intracodon recombination events result in a reticulated
ACG for codon 1 (b), while for codons 2 (c) and 3 (d), the ACG are binary trees.
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the ancestral codon graph (ACG) (Figure 1). Note
that, in the presence of recombination, the ACGs along
the alignment can be different from each other.
Moreover, for codons that contain recombination
breakpoints, the ACGs are reticulated graphs or net-
works, while, for the nonrecombining codons, the
ACGs are binary trees. The algorithm for building the
ARG is as follows:

1. Start with k nodes¼ n sampled sequences. Each node
contains a single segment encompassing all the
codons considered.

2. Sample the time back to the next event from an
exponential distribution with the parameter k(k� 1)/
2 1 2Nrg, where N is the effective population size, r is
the recombination rate per site per generation, and g
is the number of possible breakpoint sites summed
over all sequences in the sample. A breakpoint site is
a potential recombining site only when it has non-
MRCA (most recent common ancestor) ancestral
material (sampled or unsampled; see below) before
and after it (see Wiuf and Hein 1999).

3. Choose the type of event. It will be a coalescent event
(CA) with probability [k(k � 1)/2)]/[k(k � 1)/2 1

2Nrg] and a recombination event (RE) with proba-
bility 2Nrg/[k(k � 1)/2 1 2Nrg].

4. Complete the event. If it is a CA event, select two
nodes at random and merge them into a new
ancestral node inheriting all the segments from both
coalescing and descendant nodes and set k¼ k� 1. If
it is a RE event, draw a random site among all possible
breakpoints across all segments in all nodes. Cut all
the segments in the (recombinant) node that con-
tains the chosen (breakpoint) site into left and right
segments. If the event occurs between codons, create

two ancestral parental nodes that will inherit either
the left or the right segments and set k¼ k 1 1. If the
event occurs within a codon, create two ancestral
parental nodes that will inherit the left and right
segments (ancestral material that does reach the
sample or ‘‘sampled material’’) and the left and right
site(s) flanking the breakpoint in the same codon
(ancestral material that never reaches the sample or
‘‘unsampled material’’), set g ¼ g 1 3 and k ¼ k 1 1.
In both cases, keep the location and ancestral re-
lationships of every segment.

5. If k ¼ 1, label this node as the root and end the
process; otherwise, go to step 2.

Importantly, note that intracodon recombination
increases the amount of (unsampled) ancestral material
by three nucleotides.

In a second step, each codon is evolved independently
along its ACG, starting at the root, which contains all
the sampled and unsampled ancestral material (Figure
1). Note that in the presence of intracodon recombi-
nation the grand most recent common ancestor
(GMRCA) (Griffiths and Marjoram 1996) of the
sample is not necessarily the root node. Given branch
lengths and a Markov model of codon evolution, it is
straightforward to calculate the probabilities of change
between any two nodes and to use them to evolve the
codons along a nonreticulated ACG (i.e., a tree) (Yang

2006). If the ACG is reticulated, the process is slightly
more involved. The general recursion proceeds as
follows, independently for each codon position (Fig-
ure 2):

1. Starting at the root, choose a random codon by
sampling it from the equilibrium distribution.

Figure 2.—An example of codon evolution
along the ACG. Open and shaded circles corre-
spond to coalescence and parental nodes, re-
spectively. (a) Starting from the GMRCA, the
codon is evolved between nodes according to
the probabilities specified by the codon model
and the branch length. (b) The process then en-
counters a parental node, and because the other
parental node has not been assigned a codon yet,
it waits there. (c) The algorithm continues its re-
cursion toward the present. (d) The process en-
counters a parental node, and because the other
parental node has already been assigned a co-
don, (e) it combines the two codons according
to the recombination breakpoint. (f) Finally,
the resulting recombinant codon (ACT) is
evolved.
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2. Evolve this codon to produce new codons at the
descendant nodes.

3. For every node with an assigned codon that has not
been evolved yet:

a. If the node is a tip, do nothing else.
b. If the node is a coalescent node, evolve its

codon to produce new codons at the two
descendant nodes.

c. If the node is a parental node, check whether
both parentals involved in the same recombi-
nation event have been already assigned a
codon. If not, wait until this assignment is made.
Once both parentals have been assigned a
codon, combine both codons according to the
breakpoint location and evolve the resulting
codon to produce a new codon at the descen-
dant recombinant node. If a codon stop is
generated, erase all codons in the ACG and go
back to step 1.

4. If all the nodes in the ACG have been assigned a
codon, stop.

Note that, in step 3c, if a codon stop is created, we
start the substitution process again from the root,
keeping the simulated genealogy to afford computa-
tional costs and to avoid favoring smaller genealogies
because larger genealogies tend to have more recom-
bination events and thus a higher chance of generating
stop codons.

Algorithm development and validation: The algo-
rithm was implemented in C in a program called
NetRecodon, which is a major redraft of Recodon (Arenas

and Posada 2007). To validate it, we compared the
results obtained with this algorithm with the theoretical
expectations for the mean and variances of different
simulation statistics, such as the number of recombina-
tion events or the time to the most recent common
ancestor (Hudson 1990). We also checked whether
these summary statistics agreed with those obtained with
the ms program (Hudson 2002) under different evolu-
tionary scenarios. In addition, substitution and codon
model parameters were estimated from the simulated
data using HYPHY (Kosakovsky Pond et al. 2005) and
PAUP* (Swofford 2000). These estimates agreed very
well with the expected values from the simulations.
Moreover, we implemented additional features that
correspond to a variety of real scenarios, such as
exponential growth, migration, longitudinal samples
(dated tips), haploid/diploid populations, and a broad
set of codon models that allow v to change along the
sequences according to different distribution (see Yang

et al. 2000).
Simulation of protein-coding sequences with recom-

bination: Global v: We simulated coding sequences
under different values of the population mutation
parameter [u ¼ 4Nml ¼ 10, 20, 50, 100, and 200, where
N is the effective (diploid) population size, m is the

substitution rate per codon, and l is the number of
codons], recombination rates (r¼ 4Nrl¼ 0, 1, 4, 16, 64,
and 128; where r is the recombination rate per nucle-
otide), and dN/dS ratios (v ¼ 0.2, 1.0, and 5.0). The
number of sequences in the sample (n¼ 10), alignment
length (l ¼ 333 codons), and effective population size
(N ¼ 1000) was constant. The codon model used was
GY94 (Goldman and Yang 1994) with a transition/
transversion ratio of 0.5, and under the standard
genetic code. For every combination of parameters (5 3

6 3 3¼ 90 combinations), we simulated recombination
in two different ways. In one setting, we used the
algorithm introduced above, where recombination was
free to occur within and between codons. In addition,
we also repeated the simulations but forced recombina-
tion to occur only between codons because this setting
had been previously used to understand the impact of
recombination on the detection of positive selection
(Anisimova et al. 2003; Shriner et al. 2003). Indeed, we
made sure that the total recombination rate, r, was the
same in both situations. For every scenario, we simu-
lated 200 alignments.

The global v was estimated from the simulated data
using the Nei and Gojobori method (NG86) (Nei and
Gojobori 1986) as implemented in SNAP (Korber

2000) and maximum likelihood under the GY94 model
as implemented in HYPHY. The NG86 is a very simple
method, commonly used for closely related sequences,
which does not use phylogenetic information. The
GY94 requires a phylogeny, which was estimated with
the neighbor-joining (NJ) algorithm (Saitou and Nei

1987).
v per site: To understand the effect of recombination

on a site-by-site basis, we also performed some simu-
lations parameterized according to a real data set—an
HIV-1 env 2007 subtype reference alignment (A–K,
without recombinants)—downloaded from the Los
Alamos National Laboratory HIV sequence database
(http://hiv-web.lanl.gov) with 40 sequences and 956
codons. In particular, we studied the effect of (inter- and
intra-) codon recombination on the M0 (one rate) and
M1 (neutral) likelihood-ratio test (LRT) for homoge-
neity of v across sites (see Yang et al. 2000) and on the
identification of positively selected sites (PSS) (v . 1).

The estimated nucleotide diversity was 0.16, which
roughly corresponds to u ¼ 250 under our settings.
According to PAML (Yang 2007) under the M0, M1,
and M8 models, vM0 ¼ 0.5 (but we also studied cases
with vM0 ¼ 1.0 and vM0 ¼ 2.0), vM1 ¼ 0.1, p0M1 ¼ 0.6,
p0M8 ¼ 0.9, pM8 ¼ 0.2, qM8 ¼ 0.3, and vM8 ¼ 3.8—the
values used in the simulations. As before, we assumed
that r¼ 0, 1, 4, 16, 64, and 128, l¼ 999 nt, and N¼1000,
but we increased the sample size (n¼ 30) because these
models are more complex. The number of replicates
was 200 for M0 and M1 and 2000 for M8. For each data
set, maximum-likelihood phylogenetic trees were esti-
mated using PHYML (Guindon and Gascuel 2003)
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and fed into PAML to obtain model likelihoods. Results
for the M0 and M1 LRTs were classified as true negatives
(TN) or as false positives (FP; P-value , 0.05) when data
were simulated under M0 and as true positives (TP) or
as false negatives (FN) when data were simulated under
M1. We used this classification to calculate the false-
positive rate [FPR ¼ FP/(TN 1 FP)] and the power
[TP/(TP 1 FN)] of the LRTs. To identify PSS, we used
fixed-effects likelihood (FEL) model (Kosakovsky

Pond and Frost 2005b) assuming a ‘‘one-rate’’ (FEL-
1R; dS is held constant across sites) and a ‘‘two-rate’’
(FEL-2R; dS is adjusted across sites) model, as imple-
mented in HYPHY upon a NJ tree. False-positive rates
and power were calculated as before, but on a site-by-site
basis in the context of the M8 model.

SIMULATION RESULTS

Nonsynonymous recombination: In theory, intraco-
don recombination can generate new codons that have
0, 1, or 2 NS changes when compared to the parental
codons. In the simulations, recombination within co-
dons was indeed twice as common as intercodon re-
combination, and only at high substitution rates did the
proportion of total recombination events that resulted
in NS changes reach a significant proportion (12–34%)
(Table 1). Nonetheless, the proportion of the total NS
changes observed in the history of the sample due to
intracodon recombination was always small. This pro-
portion indeed depended on the recombination and
substitution rates and reached 10–12% when r ¼ 128
(�230 recombination events in the history of the
sample) (Table 2).

Effect of intracodon recombination on the estima-
tion of v: We did not observe a significant effect of
(intra- or inter-) recombination on the estimation of the
global v (supporting information, Table S1, Table S2,
and Table S3). However, at high substitution rates, some
significant instances were detected in which increasing
recombination rates resulted in estimates of v closer to

1, regardless of its simulated (true) value. Both methods
employed to estimate v worked better in the presence of
elevated substitution rates, although the phylogenetic
GY94 model showed a slight tendency to overestimate v

compared to NG86, especially when u was large.
Effect of intracodon recombination on the LRT for

v variation across sites: Recombination clearly biased
the M0 and M1 LRTs toward the rejection of the null
hypothesis of homogeneity of v across sites (Figure 3).
Increasing (intra-or inter-) recombination rates ele-

TABLE 1

Effect of the substitution rate on the number of nonsynonymous changes induced by recombination

Observed
nucleotide

diversity (%)

Type of recombination events (%)
% NS changes

induced by
recombination

Intercodon Intracodon

u 0 NS 0 NS 1 NS 2 NS

10 1 32.6 66.0 1.4 0.0 4.6
20 2 32.5 64.5 2.9 0.1 6.1
50 5 32.5 60.5 6.7 0.3 7.0
100 9 32.6 54.7 11.9 0.8 7.1
200 16 32.6 47.3 17.9 2.2 6.3
500 36 32.7 33.8 27.3 6.2 4.9

Results shown correspond to r ¼ 64 (�170 observed recombination events per replicate) and to v ¼ 1.0 for
different values of the substitution rate (u). The last column shows the proportion of the total nonsynonymous
(NS) changes observed in the history of the sample that have been produced by intracodon recombination.

TABLE 2

Effect of the recombination rate on nonsynonymous change

% NS changes induced by recombination

r v ¼ 0.2 v ¼ 1.0 v ¼ 5.0

u ¼ 50
0 0.0 0.0 0.0
1 0.2 0.2 0.2
4 0.6 0.5 0.5
16 2.1 2.0 2.0
64 7.3 7.0 6.9
128 13.6 12.9 12.5

u ¼ 100
0 0.0 0.0 0.0
1 0.2 0.2 0.1
4 0.6 0.6 0.5
16 2.2 2.1 2.0
64 7.5 7.1 6.8
128 13.7 12.7 12.2

u ¼ 200
0 0.0 0.0 0.0
1 0.2 0.2 0.1
4 0.6 0.5 0.5
16 2.2 1.9 1.8
64 7.4 6.3 6.0
128 13.5 11.7 10.8

Values correspond to the proportion of the total nonsynon-
ymous (NS) changes observed in the history of the sample
produced by intracodon recombination for different substitu-
tion (u), recombination (r), and v values.
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vated both the false-positive rate and power, making
these LRTs nonconservative.

Effect of intracodon recombination on the identifi-
cation of PSS: Recombination significantly increased
the number of sites erroneously identified as positively
selected by FEL-1R, although the errors were also
evident in the absence of recombination. At high
recombination rates (r ¼ 64, 128), the number of false
PSSs reached 30–35 (of 333 codons) at the 95%
significance level (Figure S1). When the PSSs were
identified with FEL-2R, the number of false positives

clearly decreased. In this case, the number of false PSSs
was tiny when the recombination rate was 0 or very small
and increased slowly with higher rates. In all cases,
allowing for intracodon recombination did not make a
difference. Consequently, the false-positive rate was
more or less constant regardless of the recombination
rate in the case of FEL-1R and smaller and much more
correlated with the recombination rate for FEL-2R
(Figure 4). Remarkably, the power to detect PSS was
four times higher for FEL-2R than for FEL-1R. In both
cases, the recombination rate did not affect the results,
except for the fact that the standard errors per replicate
decreased at larger recombination rates.

DISCUSSION

Simulation is indeed a powerful tool in population
genetics, with a rich variety of applications, but most of

Figure 3.—Performance of the likelihood-ratio test for ho-
mogeneous selection pressure across sites in the presence of
recombination. Solid and darkly shaded bars indicate the M0
and M1 LRT false-positive rate when data were simulated with-
out/with intracodon recombination, respectively. Lightly
shaded and open bars correspond to the power of the LRT
for the same two scenarios.

Figure 4.—Performance of the FEL estimator of v (per
site) in the presence of recombination. Data were simulated
under a M8 model. Solid and darkly shaded bars indicate the
FPR when data were simulated without/with intracodon re-
combination, respectively. Lightly shaded and open bars cor-
respond to the power for the same two scenarios. (Top) FPR
and power per replicate for FEL-1R (2000 replicates). (Bot-
tom) FPR and power per replicate for FEL-2R (200 repli-
cates). Sites identified as PSSs were those with v . 1 and a
P-value , 0.05. Error bars indicate 95% confidence intervals
per replicate.
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its benefits rely on biologically meaningful models. The
algorithm described here facilitates the generation of
more realistic protein-coding sequence samples in the
presence of recombination and, importantly, allows for
the estimation of the nonsynonymous substitutions
induced by recombination, relative to mutation. Here,
a necessary assumption is that the genealogy is in-
dependent of v (as in Anisimova et al. 2003; Shriner

et al. 2003; Scheffler et al. 2006; Wilson and McVean

2006). Our results suggest that recombination does not
have a strong overall effect on the generation of non-
synonymous changes, although this does not mean that
it cannot mislead positive selection analyses, especially
those based on phylogenies (Anisimova et al. 2003).
Other authors have studied the impact of recombina-
tion on the estimation of (the global) v. Shriner et al.
(2003) studied the effect of recombination on the
maximum-likelihood phylogenetic methods imple-
mented in PAML (Yang 1997) for the characterization
of molecular adaptation. They used the program ms
(Hudson 2002) to simulate the data, which does not
allow for intracodon recombination. Although they
found that recombination leads to false-positive de-
tection of sites undergoing positive selection, the effect
of recombination on the estimate of v across the entire
sequence length was unclear. This is because, although
point estimates were reported as significantly higher
than the expected value of 1, in fact the 95% confidence
intervals included 1 in most cases. Similarly, Anisimova

et al. (2003), also ignoring intracodon recombination,
did not find a strong effect of recombination on PAML’s
estimation of v, although there was some inflation of
the number of sites identified as positively selected (v .

1, PSS). In addition, Kosakovsky Pond et al. (2006)
found that a single recombination hotspot could in-
crease the number of PSSs detected by the FEL analysis
(Kosakovsky Pond and Frost 2005a), but they did not
investigate its effect on the estimation of v. More
recently, Kosakovsky Pond et al. (2008) did not find a
significant effect of a single recombination event on the
estimation of v, although they did find that the PSSs
identified were different when the recombination
breakpoint was explicitly taken into account. Here we
show that considering intracodon recombination does
not make a difference in the assessment of the impact of
recombination on the estimation of global v and that, as
previously shown, this impact is low.

A different issue is the effect of recombination on the
estimation of v per site. We show that recombination
can give the impression that the selection pressure
varies along the sequence when in fact it is constant and
that some sites appear to be under positive selection
when they are not. Obviously, this is especially relevant
for those studies trying to understand positive selection
across recombining genomes, such as studies of
Drosophila, humans, or HIV-1 (Nielsen and Yang

1998; Zanotto et al. 1999; De Oliveira et al. 2004;

Bustamante et al. 2005; Clark et al. 2007; Nielsen et al.
2007). In theory, recombination could inflate the value
of v (global or per site) through two different mecha-
nisms. One mechanism could be the generation of
nonsynonymous changes, but we have shown that the
number of nonsynonymous changes generated by re-
combination is low compared to substitution. Indeed,
many recombination events occur between identical
codons, especially at low substitution rates. The other
possible mechanism operates to confound phylogenetic
estimation and therefore also those methods that use a
phylogeny to estimate this parameter (so, in theory, the
NG86 method should not be affected by this bias). Our
results suggest that recombination affects selection
analyses mainly because it confounds the phylogenies
used in those analyses. Indeed, in our simulations, the
consideration of intracodon recombination does not
change the effects of recombination when only inter-
codon events, which cannot result in nonsynonymous
changes, are allowed. Previously, Anisimova et al.
(2003) found that just using an incorrect phylogeny
can have a severe effect on the comparison of codon
models. Indeed, phylogenetic variation across sites can
be wrongly interpreted by the LRTs as variation in
synonymous and nonsynonymous substitution rates.
This can happen because different trees along the
alignment can have different heights (see Figure 1, for
example), and when dS is held constant (as it is in most
popular codon models), this variation in tree length can
be interpreted as variation in dN and therefore as
variation of the dN/dS ratios (Anisimova et al. 2003).
The fact that a model that does not hold dS constant
(FEL-2R) showed much better properties in terms of
false-positive rate and power (and provides a better
statistical fit; data not shown) in the presence of
recombination supports this idea. However, some bias
still persisted, and this might be due to recombination
misleading phylogenetic inference and the derived
LRTs (Anisimova et al. 2003). Indeed, we have previously
shown (Posada and Crandall 2002) that the trees
inferred by ignoring recombination can be quite differ-
ent from the underlying true phylogenies. In any case,
using a ‘‘two-rate’’ or ‘‘dual’’ model such as FEL-2R seems
highly recommended if recombination is suspected to
have occurred in the history of the sample under study.

By chance, 2/3 of the recombination events that
occur within coding sequences should happen within
codons. We have analyzed recombination breakpoints
for the circulant recombinant forms of HIV-1 reported
at the Los Alamos HIV database (http://www.hiv.lanl.
gov/content/sequence/HIV/CRFs/breakpoints.html).
Note that these breakpoints are very gross estimates and
do not constitute a random sample. Among the 290
breakpoint locations listed, only 28% occur within
codons, which might suggest that intracodon recombi-
nation events are selected against and/or are more
difficult to detect (especially if the detection is carried
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out at the amino acid level). More reliable data are
needed to better understand this question.

To our knowledge, only one method has been de-
veloped to co-estimate r and v (Wilson and McVean

2006). This method showed very good performance in
simulations, but these did not allow recombination
within codons. One of the potential uses of our
algorithm is a more meaningful evaluation of these
kinds of methods. The algorithm described here has
been implemented in a computer program called
NetRecodon, freely available from the software section at
http://darwin.uvigo.es, which also simulates migration,
demographic periods, and dated tips. The program is
reasonably fast and can produce large alignments (100
sequences with 1000 codons will take 2 min). Note that
the execution time depends directly on the recombina-
tion and substitution rates. Conveniently, NetRecodon can
also run in parallel (using the Message Passing Interface
libraries). This algorithm could be used to more re-
alistically model the evolution of nuclear genes and fast-
evolving pathogens such as HIV-1 or the estimation of
genetic parameters using approximate Bayesian com-
putation (Beaumont et al. 2002; Tallmon et al. 2004;
Excoffier et al. 2005; Tanaka et al. 2006). Certainly, in
coding sequences, recombination occurs more often
within codons than between them, and therefore re-
combination needs to be taken into account.
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FIGURE S1.—False PSS estimated by FEL-1R and FEL-2R in the presence of recombination. Data was simulated under an 
M8 model with (white bars) and without (grey bars) recombination breakpoints within codons. The panel shows the average 
number of false PSS (ω > 1; p-value < 0.05) for FEL-1R (upper; 2000 replicates) and FEL-2R (lower; 200 replicates). Error bars 
indicate 95% confidence intervals. 
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TABLE S1. Effect of recombination on the estimation of the global ! when the 

simulated value was ! = 0.2. "  is the population mutation rate and # is the population 

recombination rate. ! was estimated using the Nei and Gojobori method (NG86) in 

SNAP, and the ML phylogenetic framework under the GY94 codon model in HYPHY. 

Error bars indicated approximate 95% confidence intervals. 

 

  Intercodon and intracodon 

recombination 

Only intercodon recombination 

" # NG86 GY94 NG86 GY94 

0 0.25 ± 0.02 0.24 ± 0.02  0.25 ± 0.01 0.22 ± 0.01 

1 0.25 ± 0.02 0.23 ± 0.02 0.25 ± 0.02 0.23 ± 0.01 

4 0.23 ± 0.02 0.21 ± 0.01 0.26 ± 0.02 0.24 ± 0.02 

16 0.25 ± 0.02 0.23 ± 0.01 0.26 ± 0.02 0.23 ± 0.02 

64 0.24 ± 0.02 0.23 ± 0.02 0.25 ± 0.02 0.23 ± 0.02 

 

 

10 

128 0.25 ± 0.02 0.23 ± 0.02 0.24 ± 0.02 0.22 ± 0.02 

0 0.23 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 0.21 ± 0.01 

1 0.23 ± 0.01 0.22 ± 0.01 0.23 ± 0.01 0.21 ± 0.01 

4 0.23 ± 0.01 0.22 ± 0.01 0.23 ± 0.01 0.22 ± 0.01 

16 0.22 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 

64 0.21 ± 0.01 0.21 ± 0.01 0.22 ± 0.01 0.22 ± 0.01 

 

 

20 

128 0.22 ± 0.01 0.22 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 

0 0.21 ± 0.01 0.21 ± 0.01 0.21 ± 0.00 0.21 ± 0.00 

1 0.22 ± 0.01 0.21 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 

4 0.21 ± 0.01 0.22 ± 0.01 0.21 ± 0.01 0.21 ± 0.00 

16 0.22 ± 0.01 0.22 ± 0.01 0.21 ± 0.00 0.21 ± 0.00 

64 0.21 ± 0.01 0.21 ± 0.01 0.21 ± 0.00 0.22 ± 0.00 

 

 

50 

128 0.22 ± 0.01 0.22 ± 0.01 0.21 ± 0.00 0.22 ± 0.00 

0 0.20 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 

1 0.21 ± 0.01 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 

4 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.22 ± 0.00 

16 0.22 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 0.22 ± 0.00 

64 0.23 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.23 ± 0.00 

 

 

100 

128 0.22 ± 0.00 0.23 ± 0.00 0.22 ± 0.00 0.23 ± 0.00 

0 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 

1 0.20 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 

4 0.22 ± 0.00 0.22 ± 0.00 0.21 ± 0.00 0.22 ± 0.00 

16 0.23 ± 0.00 0.24 ± 0.00 0.22 ± 0.00 0.23 ± 0.00 

64 0.24 ± 0.00 0.25 ± 0.00 0.24 ± 0.00 0.25 ± 0.00 

 

 

200 

128 0.24 ± 0.00 0.26 ± 0.00 0.24 ± 0.00 0.25 ± 0.00 

 

TABLE S1 

Effect of recombination on the estimation of the global ω when the simulated value was ω = 0.2 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ is the population mutation rate and ρ is the population recombination rate.ω was estimated using the Nei and 
Gojobori method (NG86) in SNAP, and the ML phylogenetic framework under the GY94 codon model in 
HYPHY. Error bars indicated approximate 95% confidence intervals. 
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TABLE S2. Effect of recombination on the estimation of the global ! when the 

simulated value was ! = 1.0. "  is the population mutation rate and # is the population 

recombination rate. ! was estimated using the Nei and Gojobori method (NG86) in 

SNAP, and the ML phylogenetic framework under the GY94 codon model in HYPHY. 

Error bars indicated approximate 95% confidence intervals. 

 

  Intercodon and intracodon 

recombination 

Only intercodon recombination 

" # NG86 GY94 NG86 GY94 

0 1.06 ± 0.06 1.33 ± 0.19 1.11 ± 0.08 1.28 ± 0.12 

1 1.18 ± 0.09 1.38 ± 0.19 1.08 ± 0.08 1.15 ± 0.07 

4 1.09 ± 0.07 1.23 ± 0.13 1.15 ± 0.09 1.23 ± 0.11 

16 1.14 ± 0.07 1.22 ± 0.10 1.19 ± 0.09 1.22 ± 0.10 

64 1.14 ± 0.06 1.17 ± 0.09 1.18 ± 0.07 1.24 ± 0.09 

 

 

10 

128 1.29 ± 0.10 1.31 ± 0.14 1.20 ± 0.07 1.25 ± 0.12 

0 1.15 ± 0.06 1.16 ± 0.08 1.07 ± 0.06 1.08 ± 0.05 

1 1.12 ± 0.07 1.12 ± 0.06 1.09 ± 0.06 1.13 ± 0.06 

4 1.08 ± 0.06 1.11 ± 0.06 1.15 ± 0.06 1.13 ± 0.06 

16 1.14 ± 0.06 1.11 ± 0.06 1.16 ± 0.07 1.11 ± 0.06 

64 1.15 ± 0.07 1.09 ± 0.06  1.21 ± 0.07 1.17 ± 0.08 

 

 

20 

128 1.22 ± 0.07 1.16 ± 0.07  1.23 ± 0.07 1.13 ± 0.07 

0 1.06 ± 0.04 1.06 ± 0.03 1.05 ± 0.04 1.05 ± 0.03 

1 1.05 ± 0.04 1.06 ± 0.03 1.08 ± 0.04 1.06 ± 0.03 

4 1.04 ± 0.03 1.07 ± 0.03 1.05 ± 0.05 1.04 ± 0.04 

16 1.08 ± 0.04 1.08 ± 0.04 1.05 ± 0.04 1.04 ± 0.04 

64 1.04 ± 0.03 1.05 ± 0.03 1.05 ± 0.03 1.04 ± 0.03 

 

 

50 

128 1.05 ± 0.03 1.07 ± 0.04 1.03 ± 0.03 1.03 ± 0.03 

0 1.01 ± 0.02 1.02 ± 0.02 1.04 ± 0.03 1.06 ± 0.02 

1 1.02 ± 0.02 1.03 ± 0.02 1.04 ± 0.03 1.04 ± 0.02 

4 1.00 ± 0.03 1.02 ± 0.02 1.01 ± 0.03 1.03 ± 0.02 

16 1.00 ± 0.02 1.03 ± 0.02 0.99 ± 0.02 1.02 ± 0.02 

64 0.98 ± 0.02 1.02 ± 0.02 0.99 ± 0.02 1.03 ± 0.02 

 

 

100 

128 1.00 ± 0.02 1.04 ± 0.02 0.98 ± 0.02 1.03 ± 0.02  

0 1.01 ± 0.02 1.03 ± 0.02 1.00 ± 0.02 1.03 ± 0.02 

1 0.99 ± 0.02 1.03 ± 0.02 0.99 ± 0.02 1.03 ± 0.02 

4 0.99 ± 0.02 1.03 ± 0.02 0.99 ± 0.02 1.02 ± 0.02 

16 1.00 ± 0.02 1.04 ± 0.02 0.96 ± 0.02 1.00 ± 0.02 

64 0.96 ± 0.02 1.01 ± 0.02 0.98 ± 0.02 1.03 ± 0.02 

 

 

200 

128 0.98 ± 0.02 1.04 ± 0.02 0.96 ± 0.01 1.01 ± 0.02 

TABLE S2 

Effect of recombination on the estimation of the global ω when the simulated value was ω = 1.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ is the population mutation rate and ρ is the population recombination rate. ω was estimated 

using the Nei and Gojobori method (NG86) in SNAP, and the ML phylogenetic framework under 

the GY94 codon model in HYPHY. Error bars indicated approximate 95% confidence intervals. 
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TABLE S3. Effect of recombination on the estimation of the global ! when the 

simulated value was ! = 5.0. "  is the population mutation rate and # is the population 

recombination rate. ! was estimated using the Nei and Gojobori method (NG86) in 

SNAP, and the ML phylogenetic framework under the GY94 codon model in HYPHY. 

Error bars indicated approximate 95% confidence intervals. 

 

  Intercodon and intracodon 

recombination 

Only intercodon recombination 

" # NG86 GY94 NG86 GY94 

0 3.41 ± 0.33 6.89 ± 0.72 3.34 ± 0.30 6.42 ± 0.62 

1 3.90 ± 0.35 7.55 ± 0.65 3.46 ± 0.42 6.40 ± 0.61 

4 3.46 ± 0.31 6.87 ± 0.64 3.45 ± 0.30 7.10 ± 0.68 

16 3.34 ± 0.23 6.56 ± 0.59 3.23 ± 0.24 6.81 ± 0.62 

64 3.07 ± 0.19 6.23 ± 0.55   3.05 ± 0.20 7.05 ± 0.61 

 

 

10 

128 3.04 ± 0.20 6.78 ± 0.58 2.92 ± 0.15 6.80 ± 0.61 

0 4.98 ± 0.48 6.42 ± 0.55 4.58 ± 0.49 6.03 ± 0.48 

1 4.95 ± 0.44 6.10 ± 0.49 4.85 ± 0.37 6.20 ± 0.47 

4 4.40 ± 0.27 5.52 ± 0.42 4.78 ± 0.40 6.02 ± 0.45 

16 4.64 ± 0.27  5.60 ± 0.44 4.40 ± 0.28 5.70 ± 0.42 

64 4.54 ± 0.25 5.49 ± 0.42 4.74 ± 0.29 5.98 ± 0.46 

 

 

20 

128 4.71 ± 0.26 5.61 ± 0.40 4.76 ± 0.26 5.83 ± 0.43 

0 4.87 ± 0.28 5.52 ± 0.31 5.31 ± 0.36 5.81 ± 0.33 

1 4.76 ± 0.27 5.39 ± 0.29 5.17 ± 0.33 5.47 ± 0.29 

4 5.20 ± 0.35 5.59 ± 0.30 5.19 ± 0.30 5.62 ± 0.33 

16 5.42 ± 0.40 5.62 ± 0.34 5.08 ± 0.30 5.24 ± 0.30 

64 5.59 ± 0.50 5.40 ± 0.32  5.41 ± 0.30 5.28 ± 0.29 

 

 

50 

128 5.59 ± 0.35 5.37 ± 0.30 5.41 ± 0.31 5.24 ± 0.27 

0 4.54 ± 0.21 5.14 ± 0.20 4.92 ± 0.26 5.48 ± 0.25 

1 4.77 ± 0.28 5.22 ± 0.24 4.65 ± 0.22 5.15 ± 0.19 

4 4.44 ± 0.19 4.94 ± 0.20 4.61 ± 0.24 5.05 ± 0.20 

16 4.54 ± 0.18 5.04 ± 0.20 4.54 ± 0.23 5.04 ± 0.23 

64 4.22 ± 0.17 4.84 ± 0.21 4.33 ± 0.17 4.82 ± 0.19 

 

 

100 

128 4.27 ± 0.19 4.84 ± 0.21 4.28 ± 0.16 4.83 ± 0.18 

0 4.26 ± 0.16 5.23 ± 0.18 4.19 ± 0.14 5.15 ± 0.16 

1 4.29 ± 0.14 5.20 ± 0.16 4.13 ± 0.13 5.00 ± 0.14 

4 3.94 ± 0.14 4.76 ± 0.14 3.94 ± 0.12 4.83 ± 0.16 

16 3.73 ± 0.12 4.61 ± 0.15 3.62 ± 0.10 4.45 ± 0.13 

64 3.38 ± 0.08 4.28 ± 0.12 3.50 ± 0.09 4.46 ± 0.13 

 

 

200 

128 3.32 ± 0.11 4.22 ± 0.14 3.48 ± 0.08 4.47 ± 0.14 

 

 

TABLE S3 

Effect of recombination on the estimation of the global ω when the simulated value was ω = 5.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ is the population mutation rate and ρ is the population recombination rate. ω was estimated 
using the Nei and Gojobori method (NG86) in SNAP, and the ML phylogenetic framework 
under the GY94 codon model in HYPHY. Error bars indicated approximate 95% confidence 
intervals. 
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