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ABSTRACT

Until recently, the use of Bayesian inference was limited to a few cases because for many realistic
probability models the likelihood function cannot be calculated analytically. The situation changed with
the advent of likelihood-free inference algorithms, often subsumed under the term approximate Bayesian
computation (ABC). A key innovation was the use of a postsampling regression adjustment, allowing
larger tolerance values and as such shifting computation time to realistic orders of magnitude. Here we
propose a reformulation of the regression adjustment in terms of a general linear model (GLM). This
allows the integration into the sound theoretical framework of Bayesian statistics and the use of its
methods, including model selection via Bayes factors. We then apply the proposed methodology to the
question of population subdivision among western chimpanzees, Pan troglodytes verus.

WITH the advent of ever more powerful computers
and the refinement of algorithms like MCMC or

Gibbs sampling, Bayesian statistics have become an
important tool for scientific inference during the past
two decades. Consider a model M creating data D
(DNA sequence data, for example) determined by
parameters u from some (bounded) parameter space
P � Rm whose joint prior density we denote by pðuÞ.
The quantity of interest is the posterior distribution of the
parameters, which can be calculated by Bayes rule as

pðu j DÞ ¼ c � fMðD j uÞpðuÞ;

where fMðD j uÞ is the likelihood of the data and c ¼Ð
P

fMðD j uÞpðuÞdu is a normalizing constant. Direct use
of this formula, however, is often prevented by the fact
that the likelihood function cannot be calculated analyt-
ically for many realistic probability models. In these cases
one is obliged to use stochastic simulation. Tavaré et al.
(1997) propose a rejection sampling method for simulat-
ing a posterior random sample where the full data D are
replaced by a summary statistic s (like the number of
segregating sites in their setting). Even if the statistic does
not capture the full information contained in the dataD,
rejection sampling allows for the simulation of approxi-
mate posterior distributions of the parameters in question
(the scaled mutation rate in their model). This approach
was extended to multiple-parameter models with multi-
variate summary statistics s ¼ ðs1; . . . ; snÞT by Weiss and
von Haeseler (1998). In their setting a candidate vector
u of parameters is simulated from a prior distribution and

is accepted if its corresponding vector of summary
statistics is sufficiently close to the observed summary
statistics sobs with respect to some metric in the space of s,
i.e., if dist(s, sobs) , e for a fixed tolerance e. We suppose
that the likelihood fMðs j uÞ of the full model is continu-
ous and nonzero around sobs. In practice the summary
statistics are often discrete but the range of values is large
enough to be approximated by real numbers. The likeli-
hood of the truncated modelMeðsobsÞ obtained by this
acceptance–rejection process is given by

feðs j uÞ ¼ Indðs 2 BeðsobsÞÞ � fMðs j uÞ �
ð
Be

fMðs j uÞds

� ��1

; ð1Þ

where Be ¼ BeðsobsÞ ¼ fs 2 Rn jdistðs; sobsÞ, eg is the
e-ball in the space of summary statistics and Ind(�) is the
indicator function. Observe that feðs j uÞ degenerates to
a (Dirac) point measure centered at sobs as e/0. If the
parameters are generated from a prior pðuÞ, then the
distribution of the parameters retained after the re-
jection process outlined above is given by

peðuÞ ¼
pðuÞ

Ð
Be

fMðs j uÞdsÐ
P

pðuÞ
Ð
Be

fMðs j uÞdsdu
: ð2Þ

We call this density the truncated prior. Combining (1)
and (2) we get

pðu j sobsÞ ¼
fMðsobs j uÞpðuÞÐ

P
fMðsobs j uÞpðuÞdu

¼ feðsobs j uÞpeðuÞÐ
P

feðsobs j uÞpeðuÞdu
: ð3Þ

Thus the posterior distribution of the parameters under
the modelM for s ¼ sobs given the prior pðuÞ is exactly
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equal to the posterior distribution under the truncated
modelMeðsobsÞ given the truncated prior peðuÞ. If we can
estimate the truncated prior and make an educated guess
for a parametric statistical model of Me(sobs), we arrive at
a reasonable approximation of the posterior pðu j sobsÞ
even if the likelihood of the full modelM is unknown. It
is to be expected that due to the localization process the
truncated model will exhibit a simpler structure than the
full modelM and thus be easier to estimate.

Estimating peðuÞ is straightforward, at least when the
summary statistics can be sampled fromM in a reason-
able amount of time: Sample the parameters from the
prior pðuÞ, create their respective statistics s fromM, and
save those parameters whose statistics lie in BeðsobsÞ in a
listP ¼ fu1; . . . ; uN g. The empirical distribution of these
retained parameters yields an estimate of peðuÞ. If the
tolerance e is small, then one can assume that fMðs j uÞ is
close to some (unknown) constant over the whole range
of BeðsobsÞ. Under that assumption, Equation 3 shows
that pðu j sobsÞ � peðuÞ. However, when the dimension n
of summary statistics is high (and for more complex
models dimensions like n ¼ 50 are not unusual), the
‘‘curse of dimensionality’’ implies that the tolerance must
be chosen rather large or else the acceptance rate
becomes prohibitively low. This, however, distorts the
precision of the approximation of the posterior distribu-
tion by the truncated prior (see Wegmann et al. 2009).
This situation can be partially alleviated by speeding
up the sampling process; such methods are subsumed
under the term approximate Bayesian computation (ABC).
Marjoram et al. (2003) develop a variant of the classical
Metropolis–Hastings algorithm (termed ABC–MCMC
in Sisson et al. 2007), which allows them to sample
directly from the truncated prior peðuÞ. In Sisson et al.
(2007) a sequential Monte Carlo sampler is proposed,
requiring substantially less iterations than ABC–MCMC.
But even when such methods are applied, the assump-
tion that fMðs j uÞ is constant over the e-ball is a very rough
one, indeed.

To take into account the variation of fMðs j uÞwithin the
e-ball, a postsampling regression adjustment (termed
ABC-REG in the following) of the sample P of retained
parameters is introduced in the important article by
Beaumont et al. (2002). Basically, they postulate a
(locally) linear dependence between the parameters u
and their associated summary statistics s. More precisely,
the (local) model they implicitly assume is of the form
u ¼ Ms 1 m0 1 e, where M is a matrix of regression
coefficients, m0 a constant vector, and e a random vector
of zero mean. Computer simulations suggest that for
many population models ABC–REG yields posterior
marginal densities that have narrower highest posterior
density (HPD) regions and are more closely centered
around the true parameter values than the empirical
posterior densities directly produced by ABC samplers
(Wegmann et al. 2009). An attractive feature of ABC–REG
is that the posterior adjustment is performed directly on

the simulated parameters, which makes estimation of the
marginal posteriors of individual parameters particularly
easy. The method can also be extended to more complex,
nonlinear models as demonstrated, e.g., in Blum and
Francois (2009). In extreme situations, however, ABC–
REG may yield posteriors that are nonzero in parameter
regions where the priors actually vanish (see Figure 1B for
an illustration of this phenomenon). Moreover, it is not
clear how ABC–REG could yield an estimate of the
marginal density of modelM at sobs, information that is
useful for model comparison.

In contrast to ABC–REG we treat the parameters u as
exogenous and the summary statistics s as endogenous
variables and we stipulate forMeðsobsÞ a general linear
model (GLM in the literature—not to be confused with
the generalized linear models that unfortunately share
the same abbreviation). To be precise, we assume the
summary statistics s created by the truncated model’s
likelihood feðs j uÞ to satisfy

s j u ¼ Cu 1 c0 1 e; ð4Þ

where C is a n 3 m matrix of constants, c0 an n 3 1 vector,
and e a random vector with a multivariate normal
distribution of zero mean and covariance matrix Ss :

e�Nð0; SsÞ:

A GLM has the advantage of taking into account not
only the (local) linearity, but also the strong correlation
normally present between the components of the
summary statistics. Of course, the model assumption
(4) can never represent the full truth since its statistics
are in principle unbounded whereas the likelihood
feðs j uÞ is supported on the e-ball around sobs. But since
the multivariate Gaussians will fall off rapidly in practice
and not reach far out off the boundary of BeðsobsÞ, this is
a disadvantage we can live with. In particular, the
ordinary least squares (OLS) estimate outlined below
implies that for e/0 the constant c0 tends to sobs

whereas the design matrix C and the covariance matrix
Ss both vanish. This means that in the limit of zero
tolerance e ¼ 0 our model assumption yields the true
posterior distribution ofM.

THEORY

In this section we describe the above methodology—
referred to as ABC–GLM in the following—in more
detail. The basic two-step procedure of ABC–GLM may
be summarized as follows.

GLM1: Given a modelM creating summary statistics s
and given a value of observed summary statistics sobs,
create a sample of retained parameters uj ; j ¼ 1; . . . ; N ,
with the aid of some ABC sampler (rejection sampling,
ABC–MCMC, or ABC–PRC) based on a prior distribution
pðuÞ and some choice of the tolerance e . 0.
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GLM2: Estimate the truncated model MeðsobsÞ as a
general linear model and determine, on the basis of the
sample uj , from the truncated prior peðuÞ an approxima-
tion to the posterior pðu j sobsÞ according to Equation 3.

Let us look more closely at these two steps.
GLM1: ABC sampling: We refer the reader to Marjoram

et al. (2003) and Sisson et al. (2007) for details con-
cerning ABC algorithms and to Marjoram and Tavaré

(2006) for a comprehensive review of computational
methods for genetic data analysis. In practice, the di-
mension of the summary statistics is often reduced by a
principal components analysis (PCA). PCA also has
a certain decorrelation effect. A more sophisticated
method of reducing the dimension of summary statis-
tics, based on partial least squares (PLS), is described in
Wegmann et al. (2009). In a recent preprint, Vogl et al.
(C. Vogl, C. Futschik and C. Schloetterer, un-
published data) propose a Box–Cox-type transforma-
tion of the summary statistics that makes the likelihood
close to multivariate Gaussian. This transformation
might be especially efficient in our context as we assume
normality of the error terms in our model assumption.

To fix the notation, let P ¼ fu1; . . . ; uN g be a sample
of vector-valued parameters created by some ABC
algorithm simulating from some prior pðuÞ and S ¼
fs1; . . . ; sN g be the sample of associated summary
statistics produced by the model M. Each parameter
uj is an m-dimensional column vector uj ¼ ðuj ; . . . ; uj

mÞ
t

and each summary statistic is an n-dimensional column
vector sj ¼ ðs j

1; . . . ; s j
nÞ

t 2 BeðsobsÞ. The samples P and
S can thus be viewed as m 3 N and n 3 N matrices P and
S, respectively.

The empirical estimate of the truncated prior peðuÞ is
given by the discrete distribution that puts a point mass

of 1/N on each value uj 2 P. We smooth out this
empirical distribution by placing a sharp Gaussian peak
over each parameter value uj . More precisely, we set

peðuÞ ¼
1

N

XN
j¼1

fðu� uj ;SuÞ; ð5Þ

where

fðu� uj ;SuÞ ¼
1

j 2pSuj 1=2
e�ð1=2Þðu�uj Þt S�1

u
ðu�uj Þ

and

Su ¼ diagðs1; . . . ;smÞ

is the covariance matrix of f that determines the width
of the Gaussian peaks. The larger the number N of
sampled parameter values is, the sharper the peaks can
be chosen to still get a rather smooth pe. If the
parameter domain P is normalized to [0, 1]m, say, then
a reasonable choice is sk ¼ 1/N. Otherwise, sk should
be adapted to the parameter range of the parameter
component uk. Too small values of sk will result in
wiggly posterior curves, and too large values might
unduly smear out the curves. The best advice is to run
the calculations with several choices for Su. If pe

induces a correlation between parameters, a nondiag-
onal Su might be beneficial. In practice, however, the
posterior estimates are most sensitive to the diagonal
values of Su.

GLM2: general linear model: As explained in the
Introduction, we assume the truncated model
MeðsobsÞ to be normal linear; i.e., the random vectors
s satisfy (4). The covariance matrix Ss encapsulates the

Figure 1.—Comparison
of rejection (A and D),
ABC–REG (B and E), and
ABC–GLM (C and F) poste-
riors with those obtained
from analytical likelihood
calculations. We estimated
the population–mutation
parameter u ¼ 4Nm of a
panmictic population for
different observed num-
bers of segregating sites
(see text). Shades indicate
the L1 distance between
the inferred and the analyt-
ically calculated posterior.
White corresponds to an
exact match (zero distance)
and darker gray shades in-
dicate larger distances. If
the inferred posterior dif-
fers from the analytical

more than the prior does, squares are marked in black. The top row (A–C) corresponds to cases with a uniform prior u �
Unif([0.005, 10]) and the bottom row (D–F) to cases with a discontinuous prior u � Unifð½0:005; 3� [ ½6; 10�Þ with ‘‘gap.’’ The
tolerance e is given as the absolute distance in number of segregating sites. Shown are averages over 25 independent estimations.
To have a fair comparison, we adjusted the smoothing parameters (bandwidths) to get the best results for all approaches.

Bayesian Computation Without Likelihoods 245
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/184/1/243/6062818 by guest on 20 April 2024



strong correlations normally present between the
components of the summary statistics. C, c0, and Ss

can be estimated by standard multivariate regression
analysis (OLS) from the sample P, S created in step
GLM1. [Strictly speaking, one must redo an ABC
sample from uniform priors over P to get an unbiased
estimate of the GLM if the prior pðuÞ is not uniform
already. On the other hand, ordinary least-squares
estimators are quite insensitive to the prior’s influence.
In practice, one can as well use the sample P to do the
estimate. We applied both estimation methods to the
toy models presented in the examples from popula-

tion genetics section and found no significant
difference between the estimated posteriors. The same
holds true for the so-called feasible generalized least-
squares (FGLS) estimator; see Greene (2003). In this
two-stage algorithm the covariance matrix is first
estimated as in our setting but in a second round the
design matrix C is newly estimated. When we applied
FGLS to our toy models, we found a difference in the
estimated matrices only after the eighth significant
decimal. FGLS is a more efficient estimator only when
the sample sizes are relatively small as is often the case
in economical data sets but not in ABC situations. In
theory, both OLS and FGLS are consistent estimators
but FGLS is more efficient.] To be specific, set X ¼
(1..

.
Pt), where 1 is an N 3 1 vector of 1’s. C and c0 are

determined by the usual least-squares estimator

ðĉ0
..
.
ĈÞ ¼ SXðXtXÞ�1;

and for Ss we have the estimate

Ŝs ¼
1

N � m
R̂

t
R̂; ð6Þ

where R̂ ¼ St � X � ðĉ0
..
.
ĈÞt are the residuals. The likeli-

hood for this model—dropping the hats on the matrices
to unburden the notation—is given by

feðs j uÞ ¼ j2pSs j �1=2 � e�ð1=2Þðs�Cu�c0Þt S�1
s ðs�Cu�c0Þ: ð7Þ

An exhaustive treatment of linear models in a
Bayesian (econometric) context is given in Zellner’s
book (Zellner 1971).

Recall from (3) that for a prior pðuÞ and an observed
summary statistic sobs, the parameter’s posterior distri-
bution for our full modelM is given by

pðu j sobsÞ ¼ c � feðsobs j uÞpeðuÞ; ð8Þ

where feðsobs j uÞ is the likelihood of the truncated model
MeðsobsÞ given by (7) and peðuÞ is the estimated (and
smoothed) truncated prior given by (5).

Performing some matrix algebra (see appendix a),
one can show that the posterior (8) is—up to a

multiplicative constant—of the form
PN

i¼j expð� 1
2 Q jÞ,

where

Qj ¼ ðu� tjÞtT�1ðu� tjÞ1 . . .

. . . 1 ðsobs � c0ÞtS�1
s ðsobs � c0Þ1 . . .

. . . 1 ðujÞtS�1
u uj � ðvjÞtTvj :

Here T, tj, and vj are given by

T ¼ ðCtS�1
s C 1 S�1

u Þ�1 ð9Þ

and tj ¼ Tvj, where

vj ¼ CtS�1
s ðsobs � c0Þ1 S�1

u uj : ð10Þ

From this we get

pðu j sobsÞ }
XN
j¼1

cðujÞe�ð1=2Þðu�tj Þt T�1ðu�tj Þ; ð11Þ

where

cðujÞ ¼ exp � 1

2
ððujÞtS�1

u uj � ðvjÞtTvjÞ
� �

: ð12Þ

When the number of parameters exceeds two, graph-
ical visualization of the posterior distribution becomes
impractical and marginal distributions must be calcu-
lated. The marginal posterior density of the parameter
uk is defined by

pðuk j sÞ ¼
ð

Rm�1
pðu j sÞdu�k ;

where integration is performed along all parameters
except uk.

Recall that the marginal distribution of a multivariate
normal Nðm;SÞ with respect to the kth component is
the univariate normal density Nðmk ;sk;kÞ. Using this
fact, it is not hard to show that the marginal posterior of
parameter uk is given by

pðuk j sobsÞ ¼ a �
XN
j¼1

cðujÞexp �ðuk � t
j
kÞ2

2tk;k

 !
; ð13Þ

where tk,k is the kth diagonal element of the matrix T, tk
j

is the kth component of the vector tj, and cðujÞ is still
determined according to (12). The normalizing con-
stant a could, in principle, be determined analytically
but is in practice more easily recovered by a numerical
integration. Strictly speaking, the integration should be
done only over the bounded parameter domain P and
not over the whole of Rm. But this no longer allows for an
analytic form of the marginal posterior distribution. For
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large values of N the diagonal elements in the matrix Su

can be chosen so small that the error is in any case
negligible.

Model selection: The principal difficulty of model
selection methods in nonparametric settings is that it is
nearly impossible to estimate the likelihood ofM at sobs

due to the high dimension of the summary statistics
(curse of dimensionality); see Beaumont (2007) for an
approach based on multinomial logit. Parametric mod-
els on the other hand lend themselves readily to model
selection via Bayes factors. Given the model M, one
must determine the marginal density

fMðsobsÞ ¼
ð

P

f ðsobs j uÞpðuÞdu:

It is easy to check from (1) and (2) that

fMðsobsÞ ¼ Aeðsobs;pÞ �
ð

P

feðsobs j uÞpeðuÞdu:

Here

Aeðsobs;pÞ :¼
ð

P

pðuÞ
ð
Be

fMðs j uÞdsdu ð14Þ

is the acceptance rate p of the rejection process. It can
easily be estimated with aid of ABC–REJ: Sample
parameters from the prior pðuÞ create the correspond-
ing statistics s from M and count what fraction of the
statistics fall into the e-ball Be centered at sobs.

If we assume the underlying model ofMeðsobsÞ to be
our GLM, then the marginal density ofM at sobs can be
estimated as

fMðsobsÞ ¼
Aeðsobs;pÞ

N j2pDj 1=2

XN
j¼1

e�ð1=2Þðsobs�mj Þt D�1ðsobs�mj Þ;

ð15Þ

where the sum runs over the parameter sample
P ¼ fu1; . . . ; uN g,

D ¼ Ss 1 CSuCt

and

mj ¼ c0 1 Cuj :

For two modelsMA andMB with prior probabilities
pA and pB ¼ 1 – pA, the Bayes factor BAB in favor of
modelMA over modelMB is

BAB ¼
fMAðsobsÞ
fMB
ðsobsÞ

; ð16Þ

where the marginal densities fMA
and fMB

are calculated
according to (15). The posterior probability of model
MA is

f ðMA j sobsÞ ¼
BABpA

BABpA 1 pB
:

EXAMPLES FROM POPULATION GENETICS

Toy models: In Figure 1 we present the comparison of
posteriors obtained with rejection sampling, ABC–REG
and ABC–GLM, with those determined analytically
(‘‘true posteriors’’). As a toy model we inferred the
population–mutation parameter u¼ 4Nm of a panmictic
population model from the number of segregating sites
S of a sample of sequences with 10,000 bp for different
observed values and tolerance levels. Estimations are
always based on 5000 simulations with dist(S, Sobs) , e,
and we report the average of 25 independent replica-
tions per data point. Estimation bias of the different
approaches was assessed by computing the total varia-
tion distance between the inferred posterior and the
true one obtained from analytical calculations using the
likelihood function introduced by Watterson (1975).
Recall that the L1-distance of two densities f(u) and g(u)
is given by

d1ðf ; g Þ ¼
1

2

ð
j f ðuÞ � g ðuÞj du:

It is equal to 1 when f and g have disjoint supports and it
vanishes when the functions are identical.

When we used a uniform prior u � Unif([0.005, 10])
(Figure 1, A–C), both ABC–REG and ABC–GLM give
comparable results and improve the posterior estima-
tion compared to the simple rejection algorithm except
for very low tolerance values e where the rejection
algorithm is expected to be very close to the true
posterior. The average total variation distances over all
observed data sets and tolerance values e are 0.236,
0.130, and 0.091 for the rejection algorithm, ABC–REG,
and ABC–GLM, respectively. Note that perfect matches
between the approximate and the true posteriors are
difficult to obtain because all approximate posteriors
depend on a smoothing step that may not give accurate
results close to borders of their supports. However, when
we used a discontinuous prior u � Unif([0.005, 3] [ [6,
10]) with an admittedly extremely artificial ‘‘gap’’ in the
middle, we observed a quite distinct pattern (Figure 1, D
and E). One clearly recognizes that posteriors inferred
with ABC–REG are frequently misplaced and often even
farther away from the true posterior (in total variation
distance) than the prior, especially for cases where the
likelihood of the observed data is maximal within the
gap. The reason for this is that in the regression step of
ABC–REG parameter values may easily be shifted out-
side the prior support. This behavior of ABC–REG has
been observed earlier (Beaumont et al. 2002; Estoup

et al. 2004; Tallmon et al. 2004) and as an ad hoc solution
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Hamilton et al. (2006) proposed to transform the
parameter values prior to the regression step by a
transformation of the form y ¼ �lnðtanðððx � aÞ=
ðb � aÞÞðp=2ÞÞ�1Þ, where a and b are the lower and
upper borders of the prior support interval. For more
complex priors—like the discontinuous prior used
here—this transformation may not work. ABC–GLM is
much less affected by the gap prior than ABC–REG. The
average total variation distances over all observed data
sets and tolerance values e are 0.221, 0.246, and 0.094
for the rejection algorithm, ABC–REG, and ABC–GLM,
respectively. Example posteriors with Sobs¼ 16 based on
5000 simulations with dist(S, Sobs) , 10 are shown in
Figure 2.

The success of ABC–GLM depends on how well a
general linear model fits the truncated modelMeðsobsÞ.
Under the null hypothesis that the fit is perfect the
estimated residuals rj (see Equation 6) are indepen-
dently multivariate normally distributed random vec-
tors. Hence the Mahalanobis distances

dj ¼ rt
j S
�1
s rj � x2

n ð17Þ

follow a x2-distribution with n degrees of freedom. As a
quantification of model assessment we propose to
report the Kolmogorov–Smirnov test statistic for the
empirical distribution of dj and the reference x2-distri-
bution. (Reporting P-values will be of little use in
practice since the null hypothesis does never hold
exactly and hence the P-values will become very small
due to the large sample size.)

When the summary statistics are created from a
general linear model, the fit should be optimal. This is
indeed the case as the simulation results in Table 1 show.
We performed 200 simulations of randomly created
general linear models with m ¼ 3 parameters, n ¼ 4
summary statistics, and a multivariate normal prior. The
observed statistics were also created from the respective
models. For each simulated observed statistic and

different acceptance rates p ¼ 1.00, 0.50, 0.10, 0.05,
and 0.01 we calculated the approximate posterior
distributions pe, pREG, and pGLM for the rejection
algorithm, ABC–REG, and ABC–GLM, respectively. As
the prior is multivariate normal, the true posterior p0

can be analytically determined. Table 1 contains the
means and standard deviations over the 200 simulations
of the total variation distances of the approximate
posteriors to the true posterior p0 as well as the mean
and standard deviations of the Kolmogorov–Smirnov
test statistics for the GLM model fit. As is expected, the
model fit is perfect [i.e., the Kolmogorov–Smirnov (KS)
statistic is close to 0] for acceptance rate p ¼ 1. As the
acceptance rate becomes lower, the model fit deterio-
rates since the truncated model of a GLM is no longer
exactly a general linear model. The total variation
distance to the true posterior increases slightly as p gets
smaller but the improved rejection posterior pe mostly
outbalances the poorer model fit. As is expected in this
ideal situation, ABC–GLM and ABC–REG substantially
improve the posterior estimation over the pure re-
jection prior.

To test the other extreme we performed 200 simu-
lations for a nonlinear one-parameter model with
uniformly rather than normally distributed error terms;
the prior was again a normal distribution. (The details
of this toy model are described in appendix b.) As Table
2 shows, the GLM model fit is already poor for an
acceptance rate of p ¼ 1.00 (KS statistic �0.10) and
further deteriorates as p decreases. Note that the
approximate posteriors pREG and pGLM are closer to
the true posterior in average than pe and that both
adjustment methods perform similarly. As expected, the
accuracy of the posteriors increases with smaller accep-
tance rates, despite the fact that the model fit within the
e-ball decreases. This suggests that the rejection step
contributes substantially to the estimation accuracy,
especially when the true model is nonlinear. We should
mention that in �30% of the simulations both ABC–
GLM and ABC–REG actually increased the distance to
the true posterior in comparison to the rejection
posterior pe. As a rule of thumb we suggest that posterior

Figure 2.—Example posteriors for uniform (A) and dis-
continuous (B) priors. The model is the same as in Figure
1. Posterior estimates using ABC–GLM and ABC–REG for
Sobs ¼ 16 were based on 5000 simulations with dist(S, Sobs) ,
10. ABC–REG posteriors were smoothed with a bandwidth
of 0.4, and the width of the Dirac peaks in the ABC–GLM
approach was set to 10�5.

TABLE 1

Mean and standard deviation of the L1 distance between
inferred and expected posteriors for randomly generated

GLMs with NP ¼ 3, NS ¼ 4 [prior N(0, 0.22), 200 simulations]

pa d1(p0, pe) d1(p0, pREG) d1(p0, pGLM) KS statisticsb

1.00 0.51 6 0.22 0.15 6 0.10 0.01 6 0.001 0.004 6 0.001
0.50 0.42 6 0.19 0.13 6 0.10 0.02 6 0.008 0.007 6 0.003
0.10 0.29 6 0.18 0.13 6 0.11 0.03 6 0.01 0.02 6 0.01
0.05 0.24 6 0.16 0.13 6 0.12 0.03 6 0.01 0.03 6 0.01
0.01 0.21 6 0.17 0.15 6 0.14 0.05 6 0.02 0.06 6 0.02

a Acceptance rate as a fraction.
b KS statistic describing the linear model fit (see text).
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adjustments obtained by ABC–GLM or ABC–REG
should not be trusted without further validation if the
Kolmogorov–Smirnov statistic for the GLM model fit
exceeds a value of, say, 0.10. In that case linear models
are not sufficiently flexible to account for effects like
nonlinearity in the parameters and nonnormality and
heteroscedasticity in the error terms. In the setting of
ABC–REG a wider class of models is introduced in Blum

and Francois (2009), where machine-learning algo-
rithms are applied for the parameter estimations.
Whether these extensions can be applied in our context
remains to be seen. The advantage of the general linear
model is that estimations can be done with ordinary
least squares and the important quantities like marginal
posteriors and marginal likelihoods can be obtained
analytically. For more complex models these quantities
will probably be accessible only via numerical integra-
tion, Monte Carlo methods, etc.

Application to chimpanzees: In standard taxonomies,
chimpanzees, the closest living relatives of humans, are
classified into two species: the common chimpanzee
(Pan troglodytes) and the bonobo (P. paniscus). Both
species are restricted to Africa and diverged �9 MYA
(Won and Hey 2005; Becquet and Przeworski 2007).
The common chimpanzees are further subdivided into
three large populations or subspecies on the basis of
their separation by geographic barriers. Among them,
the western chimpanzees (P. troglodytes verus) form the
most remote group. Interestingly, recent multilocus
studies found consistent levels of gene flow between
the western and the central (P. t. troglodytes) chimpan-
zees (Won and Hey 2005; Becquet and Przeworski

2007). Nonetheless, a recent study of 310 microsatellites
in 84 common chimpanzees supports a clear distinction
between the previously labeled populations (Becquet

et al. 2007). Using a PCA analysis, indication for sub-
structure within the western chimpanzees was found in
the same study.

To demonstrate the applicability of the model selec-
tion given in the theory section we contrast two
different models of the western chimpanzee population

with this data set: a model of a single panmictic
population with constant size and a finite island model
of constant size and constant migration among demes.
While we estimated u ¼ 2Nem, priors were set on Ne and
m separately with log10(Ne) � Unif([3, 5]) and m �
N(5 3 10�4, 2 3 10�4) truncated on m 2 [10�4, 10�3]. In
the case of the finite island model, we had an additional
prior npop � Unif([10, 100]) on the number of islands,
and individuals were attributed randomly to the differ-
ent islands.

We obtained genotypes for all 50 individuals reported
to be of western chimpanzee origin from the study of
Becquet et al. (2007), excluding captive-born hybrids.
We checked the proposed (Becquet et al. 2007)
mutation pattern for each individual locus, and all
alleles not matching the assumed stepwise mutation
model were set as missing data. A total of 265 loci were
used, after removing the loci on the X and the Y
chromosome as well as those being monomorphic
among the western chimpanzees. All simulations were
performed using the software SIMCOAL2 (Laval and
Excoffier 2004) and we reproduced the pattern of
missing data observed in the data set. Using the software
package Arlequin3.0 (Excoffier et al. 2005), we calcu-
lated two summary statistics on the data set: the average
number of alleles per locus, K, and FIS, the fixation
index within the western chimpanzees. We performed a
total of 100,000 simulations per model.

In Figure 3 we report the Bayes factor of the island
model according to (16) for different acceptance rates
Ae; see (14). While there is a large variation for very
small acceptance rates, the Bayes factor stabilizes for
Ae $ 0.005. Note that Ae # 0.005 corresponds to ,500
simulations and that the ABC–GLM approach, based on
a model estimation and a smoothing step, is expected to

TABLE 2

Mean and standard deviation of the L1 distance between
inferred and expected posteriors for the uniform errors

model (see APPENDIX B) with NP ¼ 1, NS ¼ 5 {prior
N(0, 22), error Unif[�10, 10], 200 simulations}

pa d1(p0, pe) d1(p0, pREG) d1(p0, pGLM) KS statisticsb

1.00 0.56 6 0.24 0.49 6 0.25 0.46 6 0.29 0.09 6 0.01
0.50 0.40 6 0.30 0.36 6 0.28 0.37 6 0.27 0.12 6 0.01
0.10 0.38 6 0.28 0.35 6 0.26 0.34 6 0.23 0.14 6 0.03
0.05 0.34 6 0.29 0.33 6 0.27 0.32 6 0.23 0.14 6 0.02
0.01 0.29 6 0.23 0.26 6 0.22 0.26 6 0.18 0.16 6 0.03

a Acceptance rate as a fraction.
b KS statistic describing the linear model fit (see text).

Figure 3.—Bayes factor for the island relative to the pan-
mictic population model for different acceptance rates (log-
arithmic scale). For very low acceptance rates we observe large
fluctuations whereas the Bayes factor is quite stable for larger
values. Note that Ae # 0.005 corresponds to #500 simulations,
too small a sample size for robust statistical model estimation.
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produce poor results since the estimation of the model
parameters is unreliable due to the small sample size.
The good news is that the Bayes factor is stable over a
large range of tolerance values. We may therefore safely
reject the panmictic population model in favor of
population subdivision among western chimpanzees
with a Bayes factor of B � 105.

DISCUSSION

Due to still increasing computational power it is
nowadays possible to tackle estimation problems in a
Bayesian framework for which analytical calculation of
the likelihood is inhibited. In such cases, approximate
Bayesian computation is often the choice. A key
innovation in speeding up such algorithms was the
use of a regression adjustment, termed ABC–REG in
this article, which used the frequently present linear
relationship between generated summary statistics s
and parameters of the model u in a neighborhood of
the observed summary statistics sobs (Beaumont et al.
2002). The main advantage is that larger tolerance
values e still allow us to extract reasonable information
about the posterior distribution pðu jsÞ and hence less
simulations are required to estimate the posterior
density.

Here we present a new approach to estimate approx-
imate posterior distributions, termed ABC–GLM, simi-
lar in spirit to ABC–REG, but with two major advantages:
First, by using a GLM to estimate the likelihood
function, ABC–GLM is always consistent with the prior
distribution. Second, while we do not find the ABC–
GLM approach to substantially outperform ABC–REG
in standard situations, it is naturally embedded into a
standard Bayesian framework, which in turn allows the
application of well-known Bayesian methodologies such
as model averaging or model selection via Bayes factors.
Our simulations show that the rejection step is especially
beneficial if the true model is nonlinear for both ABC
approaches. ABC–GLM is further compatible with any
type of ABC sampler, including likelihood-free MCMC
(Marjoram et al. 2003) or population Monte Carlo
(Beaumont et al. 2009). Also, more complicated re-
gression regimes taking nonlinearity or heteroscedacity
into account may be envisioned when the GLM is
replaced by some more complex model. A great
advantage of the current GLM setting is its simplicity,
which renders implementation in standard statistical
packages feasible.

We showed the applicability of the model selection
procedure via Bayes factors by opposing two different
models of population structure among the western
chimpanzees P. troglodytes verus. Our analysis strongly
suggests population substructure within the western
chimpanzees since an island model is significantly
favored over a model of a panmictic population. While

none of our simple models is thought to mimic the real
setting exactly, we still believe that they capture the main
characteristics of the demographic history influencing
our summary statistics, namely the number of alleles
K and the fixation index FIS. While the observed FIS of
2.6% has been attributed to inbreeding previously
(Becquet et al. 2007), we propose that such values
may easily arise if diploid individuals are sampled in a
randomly scattered way over a large, substructured
population. While it was almost impossible to simulate
the value FIS ¼ 2.6% in the model of a panmictic
population, it easily falls within the range of values
obtained from an island model.
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Marjoram, P., and S. Tavaré, 2006 Modern computational ap-
proaches for analysing molecular genetic variation data. Nat.
Rev. Genet. 10: 759–770.

Marjoram, P., J. Molitor, V. Plagnol and S. Tavaré, 2003 Markov
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APPENDIX A: PROOFS OF THE MAIN FORMULAS

To keep this article self-contained, we present a proof of formulas (11) and (15). The argument is an adaptation
from the proof of Lemma 1 in Lindley and Smith (1972). By linearity it clearly suffices to show the formulas for one
fixed sampled parameter uj. The results then follow.

Theorem. Suppose that, given the parameter vector u, the distribution of the statistics vector s is multivariate normal,

s �NðCu 1 c0;SsÞ;

and, given the fixed parameter vector uj, the distribution of the parameter u is

u �Nðuj ;SuÞ:

Then:

1. The distribution of u given s is

u j s �NðTvj ;TÞ;

where T ¼ CtS�1
s C 1 S�1

u

� ��1
and vj ¼ CtS�1

s ðs� c0Þ1 S�1
u uj .

2. The marginal distribution of s is

s �Nðmj ;DÞ;

where mj ¼ c0 1 Cuj and D ¼ Ss 1 CSuCt .

Proof. By Bayes’ theorem

pðu j sÞ } f ðs j uÞpðuÞ:

The product on the right-hand side is of the form expð� 1
2 Q Þ, where

Q ¼ ðs� c0 � CuÞtS�1
s ðs� c0 � CuÞ1 ðu� ujÞtS�1

u ðu� ujÞ
¼ utðCtS�1

s C 1 S�1
u Þu� 2ððs� c0ÞtS�1

s Cu 1 ðujÞtS�1
u Þu 1 . . .

. . . 1 ðs� c0ÞtS�1
s ðs� c0Þ1 ðujÞtS�1

u uj

¼ utT�1u� 2ðvjÞtu 1 ðs� c0ÞtS�1
s ðs� c0Þ1 ðujÞtS�1

u uj

¼ ðu� TvjÞtT�1ðu� TvjÞ � ðvjÞtTvj 1 . . .

. . . 1 ðujÞtS�1
u uj 1 ðs� c0ÞtS�1

s ðs� c0Þ:

In the last step we completed the square with respect to u and used the fact that T is symmetric. Up to a constant that
does not depend on uj we hence get

pðu j sÞ } cðujÞexp � 1

2
ððu� TvjÞtT�1ðu� TvjÞÞ

� �
;

where cðujÞ ¼ expð� 1
2 ððu

jÞtS�1
u uj � ðvjÞtTvjÞÞ. This proves the first part of the theorem and—by linear super-

position—the validity of Equation 11.
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To prove the second part of the theorem, observe that s ¼ Cu 1 c0 1 e with e�Nð0;SsÞ and u ¼ uj 1 h with
h � Nð0;SuÞ. Putting these equalities together, we get

s�Cuj 1 c0 1 Ch 1 e:

This, being a linear combination of independent multivariate normal variables, is still multivariate normal with mean
Cuj 1 c0 and its covariance matrix is given by

E ½ðCh 1 eÞðCh 1 eÞt � ¼ E ½ChðChÞt 1 eet � ¼ CE ½hht �Ct 1 E ½eet � ¼ CSuCt 1 Ss:

This proves the second part of the theorem as well as formula (15). n

APPENDIX B: NONLINEAR TOY MODELS

In this section we describe a class of toy models that are nonlinear in the parameter u 2 R and have nonnormal,
possibly heteroscedastic error terms. Still their likelihoods are easy to calculate analytically. We set

s ¼ fðuÞ1 eðuÞ ¼
f1ðuÞ

..

.

fnðuÞ

0
B@

1
CA1

e1ðuÞ
..
.

enðuÞ

0
B@

1
CA:

Here fi(u) are monotonically increasing continuous functions of u and ei(u) are independent, uniformly distributed
error terms in the interval [–ui(u), ui(u)] 4 R, where ui(u) are nondecreasing, continuous functions:

eiðuÞ � Unifð½�uiðuÞ; uiðuÞ�Þ:

It is straightforward to check that for a prior p(u) the posterior distribution of u given s ¼ ðs1; . . . ; snÞt is (up to a
normalizing constant)

pðu j sÞ }
1

u1ðuÞ � . . . � unðuÞ
Indð½umin; umax�ÞpðuÞ;

where

umin ¼ max
i

fg�1
i ðsiÞg; umax ¼ min

i

fh�1
i ðsiÞg

and

giðuÞ ¼ fiðuÞ1 uiðuÞ; hiðuÞ ¼ fiðuÞ � uiðuÞ:

For the simulations in Table 2 we chose n ¼ 5, f1ðuÞ ¼ � � � ¼ f5ðuÞ ¼ u3, and u1ðuÞ ¼ � � � ¼ u5ðuÞ [ 10. The prior was
pðuÞ�N ð0; 4Þ.

252 C. Leuenberger and D. Wegmann
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/184/1/243/6062818 by guest on 20 April 2024


