Telomerase Is Essential to Alleviate Pif1-Induced Replication Stress at Telomeres

Michael Chang,^{*,†,‡,1} Brian Luke,^{†,‡} Claudine Kraft,[§] Zhijian Li,^{**} Matthias Peter,[§] Joachim Lingner^{†,‡} and Rodney Rothstein^{*}

*Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, [†]Swiss Institute for Experimental Cancer Research, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, [‡]National Centre of Competence in Research "Frontiers in Genetics," CH-1211 Geneva, Switzerland, [§]Institute of Biochemistry, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland and **Banting and Best Department of Medical Research and Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada

> Manuscript received July 22, 2009 Accepted for publication August 19, 2009

ABSTRACT

Pif1, an evolutionarily conserved helicase, negatively regulates telomere length by removing telomerase from chromosome ends. Pif1 has also been implicated in DNA replication processes such as Okazaki fragment maturation and replication fork pausing. We find that overexpression of *Saccharomyces cervisiae PIF1* results in dose-dependent growth inhibition. Strong overexpression causes relocalization of the DNA damage response factors Rfa1 and Mre11 into nuclear foci and activation of the Rad53 DNA damage checkpoint kinase, indicating that the toxicity is caused by accumulation of DNA damage. We screened the complete set of ~4800 haploid gene deletion mutants and found that moderate overexpression of *PIF1*, which is only mildly toxic on its own, causes growth defects in strains with mutations in genes involved in DNA replication and the DNA damage response. Interestingly, we find that telomerase-deficient strains are also sensitive to *PIF1* overexpression. Our data are consistent with a model whereby increased levels of Pif1 interfere with DNA replication, causing collapsed replication forks. At chromosome ends, collapsed forks result in truncated telomeres that must be rapidly elongated by telomerase to maintain viability.

Pifl is a 5'-3' helicase that is evolutionarily conserved from yeast to humans (Boule and Zakian 2006). It was first identified in the budding yeast *Saccharomyces cerevisiae* for its role in mitochondrial DNA maintenance as cells lacking Pifl lose mitochondrial DNA at high rates, generating respiratory-deficient (petite) cells (FOURY and KOLODYNSKI 1983; LAHAYE *et al.* 1991). Cells also express a nuclear form of Pifl that has functions independent of mitochondrial DNA maintenance, with its role in telomerase regulation being the most thoroughly characterized.

Telomeres, the physical ends of eukaryotic chromosomes, protect chromosome ends from end fusions and degradation (FERREIRA *et al.* 2004). Telomere length is maintained by a dynamic process of lengthening and shortening (TEIXEIRA *et al.* 2004). Shortening occurs by a combined result of nucleolytic degradation and incomplete DNA replication. Lengthening is primarily accomplished by the action of the reverse transcriptase telomerase, whose catalytic core consists of a protein subunit and an RNA moiety (Est2 and TLC1, respec-

¹Corresponding author: 701 W. 168th St., New York, NY 10032. E-mail: mc3096@columbia.edu tively, in *S. cerevisiae*) (SINGER and GOTTSCHLING 1994; LENDVAY *et al.* 1996; LINGNER *et al.* 1997).

 $pifl\Delta$ mutants have long telomeres, while overexpression of *PIF1* leads to modest shortening of telomeres (SCHULZ and ZAKIAN 1994; ZHOU *et al.* 2000). *De novo* telomere addition at double-stranded DNA breaks (DSBs) is increased 600- to 1000-fold in cells lacking Pif1 (SCHULZ and ZAKIAN 1994; MANGAHAS *et al.* 2001; MYUNG *et al.* 2001). These phenotypes are dependent upon telomerase, suggesting that Pif1 directly inhibits telomerase both at naturally occurring telomeres and at DSBs. Indeed, Pif1 can remove telomerase from its DNA substrates both *in vivo* and *in vitro* (BOULE *et al.* 2005). Furthermore, Pif1 preferentially unwinds RNA–DNA hybrids, consistent with a model where Pif1 displaces telomerase by unwinding the RNA–DNA hybrid formed between TLC1 and the telomeric DNA overhang (BOULE and ZAKIAN 2007).

Like its yeast counterpart, human Pif1 (hPif1) can be found both in the mitochondria and in the nucleus (FUTAMI *et al.* 2007), and ectopic expression of hPif1 causes telomere shortening (ZHANG *et al.* 2006). hPif1 interacts with telomerase, associates with telomerase activity (MATEYAK and ZAKIAN 2006), reduces telomerase processivity, and can unwind a DNA–RNA duplex *in vitro* (ZHANG *et al.* 2006). Mouse Pif1 also interacts with telomerase, although it appears to be dispensable for telomere function *in vivo* (SNOW *et al.* 2007).

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.109.107631/DC1.

In S. cerevisiae, overexpression of PIF1 reduces the viability of yku70, yku80, and cdc13 mutants (BANERJEE et al. 2006; VEGA et al. 2007) while absence of Pif1 rescues the temperature sensitivity of these mutants (DOWNEY et al. 2006; VEGA et al. 2007; SMITH et al. 2008). Yku70 and Yku80 form the heterodimeric Ku complex that protects telomeres from degradation and inappropriate recombination (GRAVEL et al. 1998; POLOTNIANKA et al. 1998; DUBOIS et al. 2002; MARINGELE and LYDALL 2002). Cdc13, an essential protein that binds to the G-rich telomeric single-stranded 3' overhangs, is also required for chromosome end protection (GARVIK et al. 1995; NUGENT et al. 1996). Mutations in YKU70, YKU80, and CDC13 can result in extensive resectioning of the C-rich strand, leaving long G-rich overhangs. Additionally, Ku and Cdc13 are important for recruiting telomerase to telomeres (PENNOCK et al. 2001; STELLWAGEN et al. 2003; FISHER et al. 2004) and Ku is also important for nonhomologous end joining (NHEJ) (FISHER and ZAKIAN 2005). However, the sensitivity of *yku* and *cdc13* mutants to *PIF1* overexpression is directly related to the fact that these mutants have long G overhangs (VEGA et al. 2007). Therefore it was proposed that the levels of telomere-bound telomerase are important for the viability of mutants with defective telomere capping (VEGA et al. 2007).

Nuclear Pif1 also has additional roles outside of telomerase regulation. Pif1 helps to maintain the replication fork barrier in the ribosomal DNA (rDNA) repeats (IVESSA et al. 2000). Furthermore, deletion of *PIF1* suppresses the lethality associated with a deletion of DNA2, a gene involved in Okazaki fragment maturation (BUDD et al. 2006). Likewise, Schizosaccharomyces pombe pfh1+ (PIF1 homolog) has similar genetic interactions with genes involved in Okazaki fragment processing (TANAKA et al. 2002; ZHOU et al. 2002; RYU et al. 2004). It has been suggested that Pif1, together with DNA polymerase δ , helps generate flaps from the 5' ends of Okazaki fragments (Ryu et al. 2004; BUDD et al. 2006; BOULE and ZAKIAN 2007; ROSSI et al. 2008; STITH et al. 2008). Pif1 also counteracts Sgs1 DNA helicase activity, promoting survival in the absence of the Top3 topoisomerase (WAGNER et al. 2006), and may also play a role in preventing genomic instability caused by G-quadruplex-forming sequences (RIBEYRE et al. 2009).

In this study, we show that overexpression of *PIF1* inhibits growth in a dose-dependent fashion. The growth inhibition can be attributed to DNA damage, as evidenced by Rad53 checkpoint kinase activation, requirement of checkpoint activity for viability, and the relocalization of the DNA damage factors Rfa1 and Mre11 into nuclear foci. This damage is present at, but not specifically restricted to, telomeres. In addition, it is likely caused by interference with lagging-strand DNA replication and is independent of Pif1's role as a negative regulator of telomerase. Unexpectedly, telo-

merase activity is required for viability when *PIF1* is overexpressed, indicating that the damage present at telomeres is repaired by telomerase. We propose a model whereby overexpression of *PIF1* causes replication defects, which at telomeres results in replication fork collapse that requires repair by telomerase.

MATERIALS AND METHODS

Yeast media, strains, and plasmids: Standard yeast media and growth conditions were used (SHERMAN 1991). Yeast strains used in this study are listed in Table 1. Nonessential haploid deletion strains were made by the Saccharomyces Gene Deletion Project (GIAEVER *et al.* 2002). ρ^0 petite strains lacking mitochondrial DNA were isolated by growing cells in the presence of ethidium bromide.

The 2-µm plasmid containing a fusion ORF encoding protein A-, hemagglutination-, and $6 \times$ histidine-tagged Pif1 under the control of the *GAL1* promoter (BG1805-PIF1) was constructed as part of a 2-µm ORF collection (GELPERIN *et al.* 2005) and purchased from Open Biosystems. The BG1766 vector control was a gift from Elizabeth Grayhack. The centromeric plasmids pVS45 (expressing the nuclear form of Pif1 under the control of the *GAL1* promoter) and pSH380 (a pRS315-derived vector control) were kindly provided by Virginia Zakian (VEGA *et al.* 2007). The pSE358-EST2 and pSE358-est2D670A plasmids were gifts from Neal Lue. pRS313-est2-up34 was a gift from Eric Gilson (EUGSTER *et al.* 2006).

Flow cytometry: A total of 750 μ l of logarithmically growing cells was harvested and fixed in 70% ethanol. Samples were washed once with water, resuspended in 0.2 mg/ml RNaseA in 50 mM Tris-Cl (pH 8.0), and incubated at 37° for 4 hr. Samples were then harvested, resuspended in 50 mM Tris-Cl (pH 7.5) containing 2 μ g/ml proteinase K, and incubated at 50° for 1 hr. Samples were harvested again and resuspended in 0.5 ml of FACS buffer [200 mM Tris-Cl (pH 7.5), 200 mM NaCl, 78 mM MgCl₂]. A total of 50 μ l was transferred into a tube containing 1 ml of 50 mM Tris-Cl (pH 7.5) containing Sytox Green (Molecular Probes, Eugene, OR). The samples were sonicated briefly and analyzed using a Becton Dickinson FACSCalibur.

Rad53 *in situ* kinase assays and immunoblotting: Rad53 *in situ* kinase assays were performed essentially as described (PELLICIOLI *et al.* 1999). To simultaneously detect Rad53 (data not shown) and overproduced protein A-tagged Pif1, proteins were separated on 7.5% polyacrylamide–SDS gels, and the immunoblots were probed with anti-RAD53 (yC-19, Santa Cruz).

Fluorescence microscopy: Cells expressing Rfa1-CFP and either Rap1-YFP or Mre11-YFP were grown to logarithmic phase at 23° in SC medium. Microscopy was performed essentially as described (LISBY *et al.* 2004).

Synthetic dosage lethality screen: The *S. cerevisiae* heterozygous diploid gene deletion mutant array (Open Biosystems) was replica pinned onto sporulation medium. Sporulated cells were mixed with strain BY7220 transformed with the plasmid pVS45. Synthetic genetic array (SGA) methodology was then used to isolate haploid gene deletion mutants containing pVS45 (TONG *et al.* 2004; TONG and BOONE 2006). Cells were replica pinned onto media containing either glucose or galactose. Mutants that grew poorly on galactose were verified for sensitivity to moderate *PIF1* overexpression by reintroducing pVS45 or the vector control pSH380 into each strain by traditional yeast transformation methods, followed by spotting 10-fold serial dilutions of yeast culture onto media containing either glucose or galactose.

TABLE 1

Yeast strains used in this study

Strain name	Genotype	Source Brachmann <i>et al.</i> (1998)	
BY4741	MATa his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$		
MCY236	MAT \mathbf{a} rad53-11::URA3 his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0	Bellaoui et al. (2003)	
W8550-5A	MAT aRFA1-CFP RAP1-YFP ADE2 RAD5 his3-11,15 leu2-3,112 trp1-1 can1-100 ura3-1	This study	
W8705-1A	MATa RFA1-CFP MRE11-YFP ADE2 RAD5 his3-11,15 leu2-3,112 TRP1 lys2∆ ura3-1	This study	
BY7220	MAT α can1::STE2pr-Sp_his5 lyp1 Δ cyh2 his3 Δ 1 leu2 Δ 0 ura3 Δ ::natMX met15 Δ	Charlie Boone	
Y8856	MATa pol1-1:: kan MX his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$	This study	
Y8875	MATa pol12-100::kanMX his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0	This study	
Y4855	MATa pri2-1::kanMX his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ met15 $\Delta 0$	This study	
Y7243	MATa cdc2-2::kanMX his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ met15 $\Delta 0$	This study	
Y8849	MAT \mathbf{a} dna2-1::kanMX his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ met15 $\Delta 0$	This study	
Y5129	MATa cdc9-1::kanMX his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0	This study	
Y10155	MAT \mathbf{a} stn1-13::kanMX his3 Δ 1 leu2 Δ 0 ura3 Δ 0 met15 Δ 0	This study	
YBJ1	MATa ura3-52 leu2-3,112 his3-200 ade2-101 lys2-801	Brad Johnson	
YBJ120	MAT& cdc13-1 ura3-52 leu2-3, 112 his3-200 ade2-101 lys2-801	Brad Johnson	
U1374	MATa/α EST2/est2Δ::URA3 ade2-1/ade2-1 can1-100/can1-100 his3-11,15/his3-11,15	Marisa Wagner	
	leu2-3,112/leu2-3,112 trp1-1/trp1-1 ura3-1/ura3-1 RAD5/RAD5	0	
YBL312	MATa rad $50\Delta kanR$ his $3\Delta \hat{1}$ leu $2\Delta \hat{0}$ ura $3\Delta \hat{0}$ lys $2\Delta \hat{0}$	This study	
YBL618	est $2\Delta natR rad50\Delta kanR his3\Delta 1 leu2\Delta 0 ura3\Delta 0$ (type I survivor)	This study	
YBL311	MATa est $I\Delta kanR$ his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ (type II survivor)	This study	
YBL314	est $1\Delta kanR$ his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ lys $2\Delta 0$ (type II survivor)	This study	
YBL613	MATa est $2\Delta natR$ his $3\Delta 1$ leu $2\Delta 0$ ura $3\Delta 0$ met $15\Delta 0$ (type II survivor)	This study	

Telomeric DNA dot blots: DNA was purified using the Promega (Madison, WI) DNA purification kit and treated with RNaseA. DNA was then spotted onto a nylon membrane, X-linked with Stratalinker (Stratagene, La Jolla, CA), and incubated overnight at 50° with radiolabeled probes to specifically detect the G-rich or C-rich telomeric strands.

RESULTS

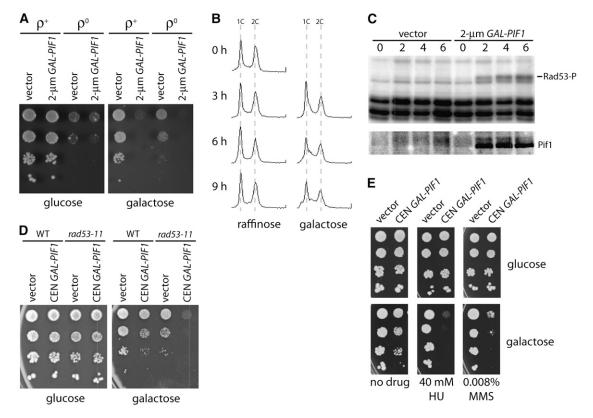
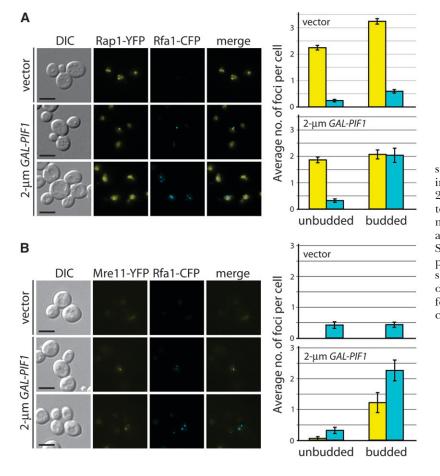
Overexpression of *PIF1* **impairs cell growth:** Several groups have reported that *PIF1* overexpression causes growth inhibition (LAHAYE *et al.* 1991; GELPERIN *et al.* 2005; BANERJEE *et al.* 2006; VEGA *et al.* 2007). The effect ranges from "moderate" to "strong," depending on whether the overexpression is driven from a galactose-inducible promoter on a low-copy centromeric plasmid (VEGA *et al.* 2007) or from a galactose-inducible promoter on a galactose-inducible promoter on a high-copy 2 μ m plasmid (LAHAYE *et al.* 1991), respectively. Mild overexpression of *PIF1* under the control of its endogenous promoter from a 2 μ m plasmid yields no observable growth defect (WAGNER *et al.* 2006). Thus, cell growth defects are augmented as Pif1 levels increase.

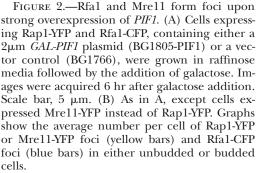
We also find that strong overexpression of *PIF1* dramatically impairs cell growth (LAHAYE *et al.* 1991) (Figure 1A). The growth impairment is not associated with the mitochondrial function of Pif1, as it is still apparent in ρ^0 strains lacking mitochondrial DNA (Figure 1A). Furthermore, there is no increase in mitochondria-defective ρ^- cells following overexpression of *PIF1* (LAHAYE *et al.* 1991). Moreover, moderate overexpression of an allele that expresses only the nuclear form of Pif1 also causes a mild growth defect

(VEGA *et al.* 2007). Therefore the growth impairment is due to the nuclear functions of Pif1.

Strong overexpression of PIF1 activates a DNA damage response: To study why overexpression of PIF1 impairs growth, we analyzed cell cycle progression by flow cytometry after the addition of galactose to induce expression of PIF1 (Figure 1B). Strong overexpression of PIF1 causes a modest accumulation of cells in S phase, which often results from the activation of replication checkpoints. Therefore, we assayed the activation of the Rad53 checkpoint kinase by analyzing both its phosphorylation-dependent mobility shift (data not shown) and its kinase activity. We find that Rad53 is robustly activated in cells strongly overexpressing PIF1 (Figure 1C). Furthermore, moderate overexpression of PIF1 in checkpoint-defective rad53-11 mutants results in dramatic growth impairment (Figure 1D). Moderate overexpression of PIF1 also renders cells sensitive to even low amounts of the replication inhibitor hydroxyurea (HU) and the DNA damaging agent methyl methanesulfonate (MMS) (Figure 1E). Taken together, our results indicate that the toxicity caused by PIF1 overexpression at least partially results from DNA damage that activates the Rad53-dependent checkpoint pathway.

Rfa1 and Mre11 foci form upon strong overexpression of *PIF1***:** Replication protein A (RPA), which consists of the subunits Rfa1, Rfa2, and Rfa3, binds single-stranded DNA (ssDNA) and is important for most aspects of eukaryotic DNA metabolism (SAKAGUCHI *et al.* 2009). RPA-coated ssDNA is a key structure for the activation of the DNA damage checkpoint response


FIGURE 1.—*PIF1* overexpression impairs cell growth due to the accumulation of DNA damage. (A) ρ^+ and ρ^0 cells were transformed with either the 2µm *GAL-PIF1* plasmid (BG1805-PIF1) or a vector control (BG1766). Tenfold serial dilutions were then spotted onto either glucose or galactose media. (B) Wild-type cells containing BG1805-PIF1 were grown logarithmically in raffinose media. The culture was split in two and galactose was added to one to induce the overexpression of *PIF1*. Samples were removed at the indicated times after the addition of galactose and analyzed by flow cytometry. The positions of cells with 1C and 2C DNA content are indicated. (C) Wild-type cells transformed with the indicated plasmids were grown in raffinose-containing media. At the indicated number of hours after the addition of galactose, samples were fixed with TCA and extracts were fractionated by SDS–PAGE for *in situ* kinase assay of Rad53 (top panel). A parallel blot was probed to detect overproduced Pif1 (bottom panel). (D) Wild-type and *rad53-11* cells were transformed with either the centromeric *GAL-PIF1* plasmid (pVS45), which expresses the nuclear form of Pif1, or a vector control (pSH380). Tenfold serial dilutions were then spotted onto either glucose or galactose media. (E) Wild-type cells containing the indicated plasmids were spotted onto minimal media containing either 40 mm HU or 0.008% (v/v) MMS.

(ZOU and ELLEDGE 2003). Rfa1 forms nuclear foci following exposure to both ionizing radiation (IR), which generates DSBs, and HU, which stalls DNA replication fork progression by depleting dNTP pools (LISBY *et al.* 2004). We find that Rfa1 foci form upon strong overexpression of *PIF1* (Figure 2), indicating that the DNA damage caused by high levels of Pif1 induces the accumulation of ssDNA. Only a small percentage of Rfa1 foci colocalizes with Rap1 (Figure 2A), a protein found at telomeres (KLEIN *et al.* 1992; GOTTA *et al.* 1996), indicating that the damage is not specifically localized to telomeres.

Mre11, Rad50, and Xrs2 form a complex that is required for NHEJ and homologous recombination and are among the first proteins to localize to a DSB (KROGH and SYMINGTON 2004; LISBY *et al.* 2004). We find that Mre11 also forms foci following strong overexpression of *PIF1* (Figure 2B), indicating the presence of DSBs. Seventy percent of Mre11 foci colocalize with Rfa1 foci, similar to the ~50% colocalization seen after IR treatment (LISBY *et al.* 2004). Furthermore, the increase in both Rfa1 and Mre11 foci is found exclusively in budded cells following strong overexpression of *PIF1* (Figure 2, bar graphs), indicating that the damage likely requires passage through S phase, consistent with known roles of Pif1 during S phase (BOULE and ZAKIAN 2006) and the S-phase delay induced by strong over-expression of *PIF1* (Figure 1B).

PIF1 synthetic dosage lethality screen: Synthetic dosage lethality (SDL) screens can identify functionally interacting genes and pathways (KROLL *et al.* 1996; MEASDAY and HIETER 2002). To further characterize Pif1, we performed an SDL screen, searching for genes required for viability when *PIF1* is moderately overexpressed. We systematically introduced the centromeric plasmid containing galactose-inducible *PIF1* into the complete collection of ~4800 viable haploid gene deletion mutations, using SGA methodology (ToNG *et al.* 2004; TONG and BOONE 2006). Plasmid-containing mutants that showed reduced growth rates on galactose

media were validated by reintroducing the PIF1 plasmid or vector control into the gene deletion mutants by classical yeast transformation techniques, followed by serial spot dilutions onto media containing either glucose or galactose to assay for cell growth. Since the screen did not include essential genes, several viable mutations of essential genes were also tested for their sensitivity to moderate overexpression of PIF1 and are included in Table 2. The list shows a strong enrichment for genes involved in DNA replication and the DNA damage response (POL1, PRI2, CTF4, CDC2/POL3, POL32, DNA2, RAD27, ELG1, CDC9, MRC1, RAD9, SGS1, CTF18, DCC1, CTF8, ASF1, and RTT109) (Table 3). Interestingly, most of the replication genes specifically affect lagging-strand synthesis. These results are consistent with overexpression of PIF1 inducing DNA damage via interfering with lagging-strand DNA replication.

As expected from previous reports (BANERJEE *et al.* 2006; VEGA *et al.* 2007), we find that $yku70\Delta$, $yku80\Delta$, and *cdc13-1* mutants, all of which accumulate ssDNA at telomeres, are sensitive to moderate *PIF1* overexpression (Figure 3). Cdc13 interacts with Stn1 and Ten1 to form an RPA-like complex (GAO *et al.* 2007) that binds the telomeric G tail and prevents degradation of the Crich strand (GARVIK *et al.* 1995). We find that *stn1-13* mutants, which also have elevated levels of telomeric

ssDNA (GRANDIN *et al.* 1997), are sensitive to moderate *PIF1* overexpression as well (Figure 3B).

To determine whether telomerase and/or nontelomerase functions of Pif1 are important for growth inhibition, we took advantage of the *est2-up34* allele, which encodes a telomerase catalytic subunit that is refractory to negative regulation by Pif1 (EUGSTER *et al.* 2006), and tested its ability to suppress the SDL interactions (Table 2). Interestingly, expression of *est2up34* rescues the sensitivity of *yku70* and *yku80* but not *cdc13-1* or *stn1-13*, to moderate overexpression of *PIF1* (Figure 3). Therefore the mechanism by which the Ku heterodimer caps telomeres is distinct from that of Cdc13 and Stn1. Indeed, Ku and Cdc13 define two different epistasis groups required for telomere maintenance (NUGENT *et al.* 1998).

Telomerase is needed to repair Pif1-induced DNA damage: Deletions in genes encoding the protein subunits of telomerase (Est1, Est2, and Est3), while viable, could not be examined in the *PIF1* SDL screen because they senesce during the many growth selection steps involved in the SGA protocol used in this study. Hence, we tested a deletion of *EST2* directly and surprisingly found that it is sensitive to moderate *PIF1* overexpression (Figure 4A). This phenotype is rescued by expression of wild-type *EST2* from a plasmid, but not by a catalytically dead *est2-D670A* allele (Figure 4B).

TABLE	2

PIF1 SDL interactions

Mutation	ORF	PIF1 SDL ^b	est2-up34°	Cellular role
pol1-1ª	YNL102W	SS	Ν	DNA replication and repair
pol12-100 ^a	YBL035C	SSS	Ν	DNA replication and repair
$pri2-1^a$	YKL045W	SSS	Ν	DNA replication and repair
$ctf4\Delta$	YPR135W	SSS	Ν	DNA replication and repair
$cdc2-2^a$	YDL102W	SS	Ν	DNA replication and repair
$pol32\Delta$	YJR043C	SSS	Ν	DNA replication and repair
$dna2-1^a$	YHR164C	SSS	Ν	DNA replication and repair
$rad27\Delta$	YKL113C	SSS	Ν	DNA replication and repair
$elg1\Delta$	YOR144C	S	Ν	DNA replication and repair
$cdc9-1^a$	YDL164C	SSS	Ν	DNA replication and repair
$mrc1\Delta$	YCL061C	SSS	Ν	DNA replication and repair
$rad9\Delta$	YDR217C	S	Ν	DNA replication and repair
sgs1 Δ	YMR190C	S	Ν	DNA replication and repair
rad53-11	YPL153C	SSS	Weak	DNA replication and repair
$ctf18\Delta$	YMR078C	SSS	Ν	DNA replication and repair
$dcc1\Delta$	YCL016C	SSS	Ν	DNA replication and repair
$ctf8\Delta$	YHR191C	SSS	Ν	DNA replication and repair
$asf1\Delta$	YJL115W	SS	Ν	DNA replication and repair
$rtt109\Delta$	YLL002W	S	Ν	DNA replication and repair
yku 70 Δ	YMR284W	SSS	Υ	Telomere maintenance
yku80Δ	YMR106C	SSS	Y	Telomere maintenance
$cdc13-1^a$	YDL220C	SSS	Ν	Telomere maintenance
$stn1-13^a$	YDR082W	SS	Ν	Telomere maintenance
$stm1\Delta$	YLR150W	S	Ν	Telomere maintenance
$est2\Delta$	YLR318W	SSS	Y	Telomere maintenance
$ctf19\Delta$	YPL018W	SS	Ν	Kinetochore/spindle
$ctf3\Delta$	YLR381W	SS	Ν	Kinetochore/spindle
$mcm16\Delta$	YPR046W	SS	Ν	Kinetochore/spindle
$mcm22\Delta$	YJR135C	SS	Ν	Kinetochore/spindle
$iml3\Delta$	YBR107C	SS	Ν	Kinetochore/spindle
$chl4\Delta$	YDR254W	SS	Weak	Kinetochore/spindle
$irc15\Delta$	YPL017C	SS	Ν	Kinetochore/spindle
$ctk1\Delta$	YKL139W	SS	Ν	Other
$mga2\Delta$	YIR033W	S	Ν	Other
$nup84\Delta$	YDL116W	S	Ν	Other
$rpa34\Delta$	YJL148W	SS	Ν	Other
$rrp6\Delta$	YOR001W	S	Ν	Other
$tsal\Delta$	YML028W	S	Ν	Other
$vps3\Delta$	YDR495C	S	Ν	Other
$yaf9\Delta$	YNL107W	SS	Ν	Other
yke 2Δ	YLR200W	SS	Ν	Other

^a SDL interaction was tested at 23°. All other SDL interactions were tested at 30°.

^b SSS, strong sensitivity; SS, moderate sensitivity; S, mild sensitivity.

^c Indicates whether the SDL interaction can be suppressed by the expression of the *est2-up34* allele. N, no; Y, yes.

Thus *PIF1* overexpression is likely causing damage at telomeres and telomerase activity is required to repair this damage. The *est2-up34* allele, which fails to respond to Pif1 negative regulation, can also rescue the sensitivity of *est2* Δ . However, expression of this allele does not alleviate the mild toxicity associated with moderate overexpression of *PIF1* in either an *EST2* or an *est2* Δ genetic background (Figures 3 and 4C). This observation implies that while telomerase is likely required to repair Pif1-induced damage at telomeres, damage elsewhere in the genome requires other repair pathways. Cells can propagate in the absence of telomerase by maintaining their telomeres via recombination-based mechanisms, and for yeast, these cells are called "survivors" (MCEACHERN and HABER 2006). *S. cerevisiae* has two main recombination-mediated pathways that yield survivors: type I and type II. Type I survivors, which are Rad51 dependent, are characterized by the amplification of subtelomeric repeats while Rad50-dependent type II survivors are characterized by amplification of the TG-telomeric repeats. We tested whether activation of either pathway could suppress the sensitivity of telomerase-negative strains to moderate *PIF1* overex-

TABLE 3

GO ID GO biological process Sample frequency (%) Background frequency (%) P-value 0006259 DNA metabolic process 25/41 (61) 433/6348 (6.8) 1.34×10^{-19} 0006974 Response to DNA damage stimulus 21/41 (51.2) 254/6348 (4.0) 2.57×10^{-19} DNA replication 0006260 16/41 (39.0) 157/6348 (2.5) 5.50×10^{-16} 0006281 17/41 (41.5) 203/6348 (3.2) 1.51×10^{-15} DNA repair 217/6348 (3.4) 4.67×10^{-15} 0034984 Cellular response to DNA damage stimulus 17/41 (41.5) 2.43×10^{-14} 0006950 25/41 (61.0) 716/6348 (11.3) Response to stress 386/6348 (6.1) 0051276 20/41 (48.8) 2.44×10^{-14} Chromosome organization 0006273 8/41 (19.5) 20/6348 (0.3) 1.75×10^{-13} Lagging-strand elongation 0060249 68/6348 (1.1) 2.25×10^{-13} Anatomical structure homoeostasis 11/41 (26.8) 68/6348 (1.1) 0000723 2.25×10^{-13} Telomere mainenance 11/41 (26.8) 68/6348 (1.1) 0032200 11/41 (26.8) 2.25×10^{-13} Telomere organization 97/6348 (1.5) 4.43×10^{-13} 0006261 DNA-dependent DNA replication 12/41 (29.3) $1.31\times10^{_{-12}}$ 0007059 13/41 (31.7) 137/6348 (2.2) Chromosome segregation $1.10\times10^{\scriptscriptstyle -11}$ 0033554 19/41 (46.3) 467/6348 (7.4) Cellular response to stress 2.00×10^{-11} 0051716 483/6348 (7.6) Cellular response to stimulus 19/41 (46.3) 0006271 DNA strand elongation during DNA replication 34/6348 (0.5) 2.36×10^{-11} 8/41 (19.5) 0022616 DNA strand elongation 2.36×10^{-11} 8/41 (19.5) 34/6348 (0.5) 0050896 Response to stimulus 1020/6348 (16.1) 8.23×10^{-11} 25/41 (61.0)

Overrepresented Gene Ontology (GO) categories as determined by AmiGO (CARBON et al. 2009)

Biological processes that are enriched with a *P*-value $< 1 \times 10^{-10}$ are shown.

pression. Since type I survivors are unstable and frequently convert to type II survivors, we tested type I survivors in a $rad50\Delta$ background, which prevents the formation of type II survivors (Figure 4D). We find that both type I and type II survivors fail to rescue the sensitivity of telomerase-negative strains to elevated levels of Pif1 (Figure 4, D and E). Thus, while recombinationbased mechanisms exist to allow cells to propagate in the absence of telomerase, these mechanisms are unable to sufficiently repair the damage caused by PIF1 overexpression. Consistent with this view, we find that cells lacking Rad52, a key player in DSB repair and homologous recombination that is necessary for the formation of both type I and type II survivors (MCEACHERN and HABER 2006), are not sensitive to moderate overexpression of PIF1 (data not shown).

Accumulation of ssDNA at telomeres in PIF1 overexpressing cells: Our data suggest that PIF1 overexpression is causing DNA damage at telomeres. However, following strong overexpression of PIF1, we observe that only a small percentage of Rfa1 foci colocalizes with Rap1 (Figure 2A). To determine whether damage is indeed occurring at telomeres, we assayed for telomeric ssDNA by probing dot-blotted genomic DNA with radiolabeled telomeric oligonucleotides. Strong overexpression of PIF1 results in an increase in the amount of telomeric ssDNA when probing for the G-rich (TG) strand (Figure 5). Telomeric ssDNA also accumulates in a yku70 Δ mutant (GRAVEL et al. 1998) and was included as a positive control. Interestingly, the increase in telomeric ssDNA is specific for the G-rich strand, because it is not seen when probing for the C-rich (CA) strand (Figure 5). Since the G-rich strand is always the template for lagging-strand DNA synthesis, it is likely

that Pif1-induced damage is specifically affecting lagging-strand replication. This view is consistent with Pif1's proposed role in Okazaki fragment maturation (Ryu *et al.* 2004; BUDD *et al.* 2006; BOULE and ZAKIAN 2007; STITH *et al.* 2008) and our SDL screen results that mutants defective in lagging-strand synthesis are sensitive to moderate overexpression of *PIF1* (Table 2).

DISCUSSION

Pif1 removes telomerase from telomeres and DNA DSBs (SCHULZ and ZAKIAN 1994; BOULE et al. 2005) and it has roles during DNA replication (IVESSA et al. 2000; RYU et al. 2004; BUDD et al. 2006; BOULE and ZAKIAN 2007; Rossi et al. 2008; STITH et al. 2008). In this study, we show that overexpression of PIF1 inhibits cell growth in a dose-dependent manner. This growth inhibition is independent of Pif1's role in removing telomerase from DNA ends since neither preventing Pif1 from negatively regulating telomerase using the est2-up34 allele (Figures 3 and 4C) nor removing telomerase by deleting EST2 (Figure 4A) alleviates the toxicity. In addition, we find that lagging-strand replication mutants are sensitive to overexpression of PIF1. Therefore, we propose a model whereby PIF1 overexpression causes DNA replication defects. At telomeres, these defects are repaired by telomerase activity.

Elevated levels of Pif1 interfere with DNA replication: Pif1 is found largely in the nucleolus where it associates with rDNA (IVESSA *et al.* 2000; WAGNER *et al.* 2006). Pif1 helps maintain the replication fork barrier at the rDNA (IVESSA *et al.* 2000), suggesting that overexpression of *PIF1* may cause excessive levels of replication fork pausing.

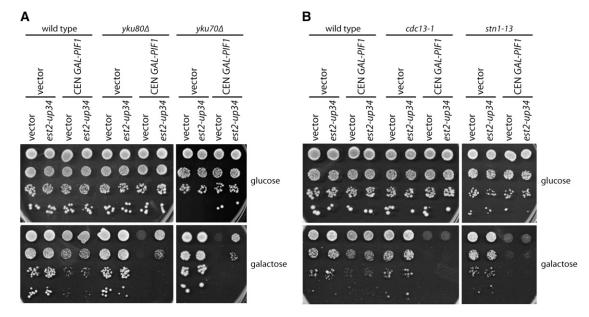


FIGURE 3.—*est2-up34* can rescue the sensitivity of $yku\Delta$ to moderate overexpression of *PIF1*. Tenfold serial dilutions were spotted onto media containing either glucose or galactose. (A) The indicated strains were transformed with either a vector control (pSH380) or the centromeric *GAL-PIF1* plasmid (pVS45), along with a second plasmid, either a vector control (pRS313) or a plasmid expressing *est2-up34*. (B) As in A, except strains were grown at 23° instead of 30°.

Pif1 also functions during the maturation of Okazaki fragments. Synthesis of these short stretches of DNA generated by lagging-strand synthesis is initiated by the DNA polymerase α-primase complex (Pol α-primase), leaving an RNA/DNA primer consisting of ~10 nucleotides (nt) of RNA followed by 10–20 nt of DNA (BAMBARA *et al.* 1997; LIU *et al.* 2004). This primer is extended by DNA polymerase δ (Pol δ), in a complex with the proliferating cell nuclear antigen (PCNA) sliding clamp and the replication factor C (RFC) clamp loader, until it encounters the 5' end of the downstream Okazaki fragment, which it can displace to produce a flap. This flap is cleaved by DNA ligase I (GARG and BURGERS 2005).

The flaps are typically short and can be cleaved by the flap endonuclease Rad27/Fen1, but longer flaps ranging from 20-30 nt can be generated, which are then coated by RPA (BAE et al. 2001; KAO et al. 2004). These longer flaps require processing by the helicase/nuclease Dna2 before further cleavage by Rad27 (BAE et al. 2001; KAO et al. 2004). Since deletion of DNA2 is lethal, but a $dna2\Delta$ pif1 Δ double mutant is viable (BUDD et al. 2006), it was proposed that Pif1 promotes the formation of long flaps that need to be processed by Dna2. Indeed, recent biochemical evidence shows that Pif1 accelerates long flap growth, allowing RPA to bind (Rossi et al. 2008). Our data support this model as we find that elevated levels of Pif1 cause Rfa1 foci formation (Figure 2A) and synthetic dosage lethality with dna2-1 and $rad27\Delta$ (Table 2).

We also find that overexpression of *PIF1* is toxic to *cdc9-1*, *pol1-1*, *pol12-100*, *pri1-2*, *ctf4* Δ , *cdc2-2*, *pol32* Δ , and

 $elg1\Delta$, all mutants with defects in lagging-strand synthesis (Table 2). CDC9 encodes DNA ligase I (JOHNSTON and NASMYTH 1978). POL1 encodes the catalytic subunit of Pol α while *POL12* and *PRI1* encode additional subunits of Pol a (PLEVANI et al. 1988). Ctf4 physically interacts with Pol1 (MILES and FORMOSA 1992). CDC2/ POL3 encodes the catalytic subunit of the lagging-strand polymerase Pol & (BLANK and LOEB 1991). Pol32 is a subunit of Pol δ that is required for optimum processivity (BURGERS and GERIK 1998; GERIK et al. 1998; JOHANSSON et al. 2004). Elg1 interacts with Rfc2-5 to form an alternative RFC complex that has been proposed to function during Okazaki fragment maturation (BELLAOUI et al. 2003; KANELLIS et al. 2003). We did not detect any mutants that are defective in leading-strand replication in our SDL screen. To ensure that these were not merely false negatives in our screen, we directly tested $dpb3\Delta$, $dpb4\Delta$, and pol2-12—mutations in genes important for leading-strand synthesis-and find that none are sensitive to moderate PIF1 overexpression (supporting information, Figure S1). Taken together, our studies strongly suggest that elevated levels of Pif1 disrupt laggingstrand DNA synthesis by causing excessive long flap formation during Okazaki fragment maturation.

The DNA replication problems caused by overexpression of *PIF1* are likely responsible for the activation of the Rad53 checkpoint kinase (Figure 1C) and for the requirement of DNA damage response genes for viability (*MRC1*, *RAD9*, *SGS1*, *CTF18*, *DCC1*, *CTF8*, *ASF1*, and *RTT109*) (Table 2). Mrc1 and Rad9 are both important for activating Rad53 in response to replication stress or DNA damage (Sun *et al.* 1998; ALCASABAS *et al.* 2001). Mrc1 is also a component of the DNA replication

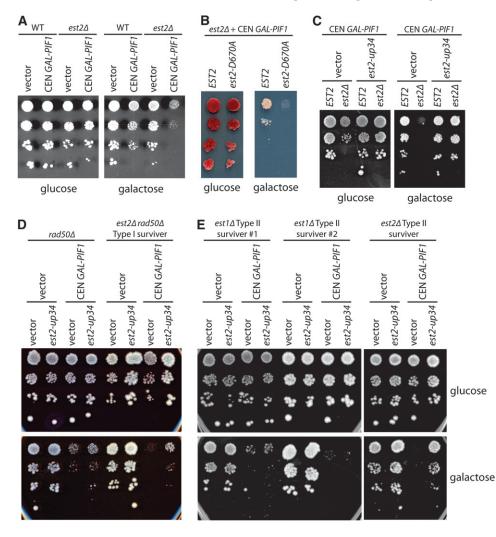


FIGURE 4.—Telomerase is needed to repair DNA damage caused by moderate overexpression of PIF1. Tenfold serial dilutions were spotted onto media containing either glucose or galactose. (A) An $EST2/est2\Delta$ heterozygous diploid was transformed with either a vector control (pSH380) or the centromeric ĜAL-PIF1 plasmid (pVS45), sporulated, and tetrad dissected to obtain the indicated strains. (B) An $EST2/est2\Delta$ heterozygous diploid was transformed with pVS45 and a plasmid expressing either wild-type EST2 or est2-D670A, sporulated, and tetrad dissected to obtain the indicated strains. (C) An $EST2/est2\Delta$ heterozygous diploid was transformed with pVS45 and either a vector control (pRS313) or a plasmid expressing est2-up34, sporulated, and tetrad dissected to obtain the indicated strains. (D and E) The indicated strains were transformed with either a vector control (pSH380) or the centromeric GAL-PIF1 plasmid (pVS45), along with a second plasmid, either a vector control (pRS313) or a plasmid expressing est2-up34. As expected, survivors of *est* 2Δ , but not *est* 1Δ , senescence are rescued by the expression of the est2-up34 allele.

machinery, moving along with the replication fork (CALZADA et al. 2005; SZYJKA et al. 2005; TOURRIERE et al. 2005). SGS1 encodes a RecQ helicase that has important roles in maintaining genomic integrity (BACHRATI and HICKSON 2008; BOHR 2008). Pif1 counteracts Sgs1 helicase activity, preventing Sgs1induced DNA damage that accumulates in a *top3* Δ mutant (WAGNER et al. 2006). Thus overexpression of PIF1 in a strain deleted for SGS1 may greatly perturb the balance of opposing helicase activity, resulting in a loss of cell viability. Alternatively, Sgs1 may be involved in repairing damage caused by PIF1 overexpression. Ctf18, Dcc1, and Ctf8, along with Rfc2-5, form an alternative RFC complex that has been linked to the DNA damage response and sister chromatid cohesion (MAYER et al. 2001; NAIKI et al. 2001). Asf1 is a histone chaperone that functions with Rtt109, a histone acetyltransferase, to acetylate lysine K56 on histone H3 (COLLINS et al. 2007; DRISCOLL et al. 2007), which is critical for chromatin reassembly following DSB repair (CHEN et al. 2008). Determining the interplay among these DNA damage factors will shed light on the cellular response to repair the lesion(s) caused by *PIF1* overexpression.

Kinetochore proteins are important for viability when PIF1 is overexpressed: Intriguingly, we find that the deletion of several kinetochore genes renders cells sensitive to PIF1 overexpression (Table 2). CTF19, CTF3, MCM16, MCM22, CHL4, and IML3 encode proteins that function at the outer kinetochore (MEASDAY et al. 2002; POT et al. 2003). The outer kinetochore is thought to provide a link between the centromere-binding inner kinetochore proteins and microtubule-binding proteins. In addition, IRC15, which encodes a microtubule-associated protein that is important in establishing tension between sister kinetochores (KEYES and BURKE 2009), was also identified in our screen. Replication forks pause at centromeres (GREENFEDER and NEWLON 1992) and this pausing is increased in the absence of Rrm3, a Pif1-like helicase (IVESSA et al. 2003). Although Pif1 and Rrm3 are $\sim 40\%$ identical and share many similar biochemical characteristics, they have largely nonoverlapping, often even opposing, functions (BOULE and ZAKIAN 2006). Thus overexpression of PIF1, like deletion of RRM3, may increase the pausing at centromeres and deleting kinetochore genes may exacerbate the phenotype. Our SDL results also suggest that some

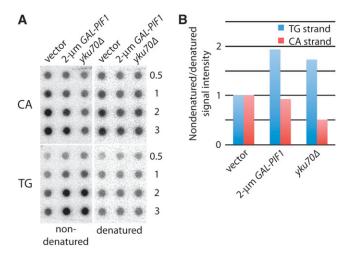


FIGURE 5.—Accumulation of telomeric ssDNA upon strong overexpression of PIF1. (A) A wild-type strain containing a vector control (BG1766), a wild-type strain containing the $2\mu m GAL-PIF1$ plasmid (BG1805-PIF1), and a $\gamma ku70\Delta$ strain were grown in galactose-containing media for 6 hr. DNA from these strains was digested with XhoI, which cuts at a site within the subtelomeric Y' element. The DNA was analyzed by a nondenaturating DNA dot blot assay, using an oligonucleotide probe composed of either TG_{1-3} or $C_{1-3}A$ telomeric repeats, to probe for either the C-rich (CA) or the G-rich (TG) strand, respectively. Blots were then denatured and hybridized using the same telomeric probes to determine total telomeric DNA loaded. Numbers to the right of the blots indicate the amount (in micrograms) of total genomic DNA spotted. The experiment was also performed twice using an in-gel hybridization protocol (DIONNE and WELLINGER 1996), yielding similar results. (B) Quantification of the data in A. The data for each blot (TG or CA) were normalized to the wild-type strain containing the vector control.

kinetochore proteins may play important roles in promoting DNA replication through the centromeric region.

Consequences of *PIF1* **overexpression at telomeres:** We suggest that the problems associated with overexpressing *PIF1* are primarily caused by excessive Pif1 action during Okazaki fragment maturation. Accordingly, most of the *PIF1* SDL interactions are unaffected by the expression of the *est2-up34* allele (Table 2). However, the sensitivity of *yku*\Delta mutations to moderate *PIF1* overexpression can be rescued by the *est2-up34* allele (Figure 3A), implying that in the absence of the Ku heterodimer, upregulation of Pif1's role as a negative regulator of telomerase is detrimental. Consistent with this view, *yku*\Delta *est2*\Delta double mutants exhibit accelerated senescence (NUGENT *et al.* 1998).

yku Δ mutants are unable to grow at 37° (FELDMANN and WINNACKER 1993; BOULTON and JACKSON 1996a,b; FELDMANN *et al.* 1996; BARNES and RIO 1997) and this temperature sensitivity can be rescued by increasing telomerase levels, either by overexpressing telomerase subunits (TEO and JACKSON 2001) or by mutating *PIF1* (VEGA *et al.* 2007; SMITH *et al.* 2008). However, neither the overexpression of *EST2* or *TLC1* nor the mutation of *PIF1* can suppress the short telomeres or elongated G tails of $yku\Delta$ cells (TEO and JACKSON 2001; SMITH *et al.* 2008). Interestingly, overexpression of *EST2* or *TLC1* suppresses activation of the Rad53 checkpoint kinase at 37° in $yku80\Delta$ cells (TEO and JACKSON 2001). Although it is not clear how telomerase antagonizes Rad53 activation, we suggest that increased levels of Pif1 kill $yku\Delta$ cells by removing telomerase from telomeres, causing activation of Rad53 and a checkpoint-mediated growth arrest.

In contrast to $yku\Delta$ mutants, expression of *est2-up34* cannot rescue the sensitivity of other telomere capping mutants such as *cdc13-1* and *stn1-13* (Figure 4B), indicating that the increased Pif1-mediated removal of telomerase from telomere ends is not responsible for the PIF1 SDL interaction in these mutants. Cdc13 interacts with Pol1 (QI and ZAKIAN 2000; HSU et al. 2004) and Stn1 interacts with the Pol12 subunit of the Pol α-primase complex (GROSSI et al. 2004). Cdc13 and Stn1, along with Ten1, may have telomere-specific roles in DNA replication by acting as a telomere-specific RPAlike complex (GAO et al. 2007). Since we find that many replication mutants are sensitive to elevated levels of Pif1 (Table 2), we propose that *cdc13-1* and *stn1-13* may have replication defects at the telomere, resulting in sensitivity to overexpression of PIF1.

Another gene that is required for viability upon moderate overexpression of *PIF1* is *STM1*, which encodes a protein that can bind G quadruplexes (FRANTZ and GILBERT 1995), four-stranded DNA structures that form at highly G-rich sequences, such as those found at telomeres (JOHNSON et al. 2008). Stm1 physically interacts with Cdc13 and overexpression of STM1 suppresses the temperature sensitivity of cdc13-1 (HAYASHI and MURAKAMI 2002). Furthermore, Pif1 has been recently shown to unwind G quadruplexes (RIBEYRE et al. 2009), strengthening a possible link between G-quadruplex formation and telomere capping. Lack of Stm1 may weaken telomere capping and cause sensitivity to PIF1 overexpression. However, Stm1 also has functions in mRNA decay and protein synthesis (VAN DYKE et al. 2006; BALAGOPAL and PARKER 2009) so it may protect cells from damage induced by PIF1 overexpression through other mechanisms not related to telomere maintenance.

Telomerase is needed to repair Pif1-induced DNA damage at telomeres: Overexpression of *PIF1* causes accumulation of telomeric ssDNA (Figure 5), likely due to its interference with DNA replication at telomeres. The presence of Mre11 foci upon strong overexpression of *PIF1* (Figure 2B) indicates that the disruption of DNA replication can cause DSBs, possibly due to replication fork collapse. We propose that telomeric DSBs caused by elevated levels of Pif1 result in critically short, truncated telomeres requiring immediate elongation by telomerase to avoid telomere uncapping and cell death. Consistent with this model, we find that telomerase activity

is required for viability upon overexpression of *PIF1* (Figure 4). In addition, our previous work has shown that *TEL1* is needed for the enhanced repeat addition processivity of telomerase necessary to elongate critically short telomeres (CHANG *et al.* 2007). However, *TEL1* is not required for viability when *PIF1* is overexpressed (VEGA *et al.* 2007). Furthermore, since deletion of *TEL1* also greatly reduces the frequency of telomere elongation (ARNERIC and LINGNER 2007) and the association of telomerase with telomeres (BIANCHI and SHORE 2007; HECTOR *et al.* 2007; SABOURIN *et al.* 2007), only a small amount of telomerase is sufficient to maintain viability upon moderate overexpression of *PIF1*. Nonetheless, this low level of telomerase is critical to repair damage created by elevated levels of Pif1.

In summary, our work shows the importance of carefully regulating the protein levels of Pif1 in the cell. We propose that overexpression of *PIF1* impairs lagging-strand synthesis, resulting in DNA damage. At telomeres, telomerase activity is needed to repair this damage. These studies reveal an important link between telomere replication and telomerase action that is mediated by the Pif1 helicase.

We thank Charlie Boone, Eric Gilson, Elizabeth Grayhack, Brad Johnson, Neal Lue, David Shore, and Virginia Zakian for providing reagents and Milica Arnerić, Kara Bernstein, and Ana María León Ortiz for constructive comments on the manuscript. M.C. was supported by a long-term fellowship award from the International Human Frontier Science Program (HFSP) Organization. C.K. was supported by a long-term European Molecular Biology Organization fellowship and a Marie-Heim Vögtlin fellowship from the Swiss National Science Foundation (SNF). Work in Charlie Boone's lab, which hosts Z.L., was supported by the Canadian Institutes of Health Research, Genome Ontario, and Genome Canada. This work was also supported by funds from the Functional Genome Center Zürich, Oncosuisse, and the Swiss Federal Institute of Technology Zürich (to M.P.); by the SNF (to M.P. and J.L.); by the HFSP and the European Union 7th Framework Programme (to J.L.); and by the National Institutes of Health (CA125520 and GM67055 to R.R.).

LITERATURE CITED

- ALCASABAS, A. A., A. J. OSBORN, J. BACHANT, F. HU, P. J. WERLER et al., 2001 Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3: 958–965.
- ARNERIC, M., and J. LINGNER, 2007 Tell kinase and subtelomerebound Tbf1 mediate preferential elongation of short telomeres by telomerase in yeast. EMBO Rep. 8: 1080–1085.
- BACHRATI, C. Z., and Í. D. HICKSON, 2008 RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117: 219–233.
- BAE, S. H., K. H. BAE, J. A. KIM and Y. S. SEO, 2001 RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412: 456–461.
- BALAGOPAL, V., and R. PARKER, 2009 Stm1 modulates mRNA decay and Dhh1 function in *Saccharomyces cerevisiae*. Genetics **181**: 93–103.
- BAMBARA, R. A., R. S. MURANTE and L. A. HENRICKSEN, 1997 Enzymes and reactions at the eukaryotic DNA replication fork. J. Biol. Chem. 272: 4647–4650.
- BANERJEE, S., S. SMITH and K. MYUNG, 2006 Suppression of gross chromosomal rearrangements by yKu70-yKu80 heterodimer through DNA damage checkpoints. Proc. Natl. Acad. Sci. USA 103: 1816–1821.
- BARNES, G., and D. RIO, 1997 DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. USA 94: 867–872.

- BELLAOUI, M., M. CHANG, J. OU, H. XU, C. BOONE *et al.*, 2003 Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. **22**: 4304–4313.
- BIANCHI, A., and D. SHORE, 2007 Increased association of telomerase with short telomeres in yeast. Genes Dev. 21: 1726–1730.
- BLANK, A., and L. A. LOEB, 1991 Isolation of temperature-sensitive DNA polymerase III from Saccharomyces cerevisiae cdc2–2. Biochemistry 30: 8092–8096.
- BOHR, V. A., 2008 Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem. Sci. 33: 609–620.
- BOULE, J. B., and V. A. ZAKIAN, 2006 Roles of Pifl-like helicases in the maintenance of genomic stability. Nucleic Acids Res. 34: 4147–4153.
- BOULE, J. B., and V. A. ZAKIAN, 2007 The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res. 35: 5809–5818.
- BOULE, J. B., L. R. VEGA and V. A. ZAKIAN, 2005 The yeast Piflp helicase removes telomerase from telomeric DNA. Nature **438**: 57–61.
- BOULTON, S. J., and S. P. JACKSON, 1996a Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24: 4639–4648.
- BOULTON, S. J., and S. P. JACKSON, 1996b Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15: 5093–5103.
- BRACHMANN, C. B., A. DAVIES, G. J. COST, E. CAPUTO, J. LI et al., 1998 Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132.
- BUDD, M. E., C. C. REIS, S. SMITH, K. MYUNG and J. L. CAMPBELL, 2006 Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 26: 2490–2500.
- BURGERS, P. M., and K. J. GERIK, 1998 Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273: 19756–19762.
- CALZADA, A., B. HODGSON, M. KANEMAKI, A. BUENO and K. LABIB, 2005 Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. **19**: 1905–1919.
- CARBON, S., A. IRELAND, C. J. MUNGALL, S. SHU, B. MARSHALL *et al.*, 2009 AmiGO: online access to ontology and annotation data. Bioinformatics **25**: 288–289.
- CHANG, M., M. ARNERIC and J. LINGNER, 2007 Telomerase repeat addition processivity is increased at critically short telomeres in a Tell-dependent manner in Saccharomyces cerevisiae. Genes Dev. **21:** 2485–2494.
- CHEN, C. C., J. J. CARSON, J. FESER, B. TAMBURINI, S. ZABARONICK et al., 2008 Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell **134:** 231–243.
- COLLINS, S. R., K. M. MILLER, N. L. MAAS, A. ROGUEV, J. FILLINGHAM et al., 2007 Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806–810.
- DIONNE, I., and R. J. WELLINGER, 1996 Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc. Natl. Acad. Sci. USA **93**: 13902–13907.
- DOWNEY, M., R. HOULSWORTH, L. MARINGELE, A. ROLLIE, M. BREHME et al., 2006 A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell 124: 1155–1168.
- DRISCOLL, R., A. HUDSON and S. P. JACKSON, 2007 Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315: 649–652.
- DUBOIS, M. L., Z. W. HAIMBERGER, M. W. MCINTOSH and D. E. GOTTSCHLING, 2002 A quantitative assay for telomere protection in Saccharomyces cerevisiae. Genetics 161: 995–1013.
- EUGSTER, A., C. LANZUOLO, M. BONNETON, P. LUCIANO, A. POLLICE et al., 2006 The finger subdomain of yeast telomerase cooperates with Pif1p to limit telomere elongation. Nat. Struct. Mol. Biol. 13: 734–739.

- FELDMANN, H., and E. L. WINNACKER, 1993 A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae.
- J. Biol. Chem. **268**: 12895–12900. FELDMANN, H., L. DRILLER, B. MEIER, G. MAGES, J. KELLERMANN *et al.*, 1996 HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J. Biol. Chem. **271**: 27765–27769.
- FERREIRA, M. G., K. M. MILLER and J. P. COOPER, 2004 Indecent exposure: when telomeres become uncapped. Mol. Cell 13: 7–18.
- FISHER, T. S., and V. A. ZAKIAN, 2005 Ku: a multifunctional protein involved in telomere maintenance. DNA Repair 4: 1215–1226.
- FISHER, T. S., A. K. TAGGART and V. A. ZAKIAN, 2004 Cell cycledependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 11: 1198–1205.
- FOURY, F., and J. KOLODYNSKI, 1983 pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in *Saccharomyces cerevisiae*. Proc. Natl. Acad. Sci. USA **80**: 5345–5349.
- FRANTZ, J. D., and W. GILBERT, 1995 A yeast gene product, G4p2, with a specific affinity for quadruplex nucleic acids. J. Biol. Chem. 270: 9413–9419.
- FUTAMI, K., A. SHIMAMOTO and Y. FURUICHI, 2007 Mitochondrial and nuclear localization of human Pif1 helicase. Biol. Pharm. Bull. 30: 1685–1692.
- GAO, H., R. B. CERVANTES, E. K. MANDELL, J. H. OTERO and V. LUNDBLAD, 2007 RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14: 208–214.
- GARG, P., and P. M. BURGERS, 2005 DNA polymerases that propagate the eukaryotic DNA replication fork. Crit. Rev. Biochem. Mol. Biol. 40: 115–128.
- GARVIK, B., M. CARSON and L. HARTWELL, 1995 Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15: 6128– 6138.
- GELPERIN, D. M., M. A. WHITE, M. L. WILKINSON, Y. KON, L. A. KUNG *et al.*, 2005 Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. **19**: 2816–2826.
- GERIK, K. J., X. LI, A. PAUTZ and P. M. BURGERS, 1998 Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 273: 19747–19755.
- GIAEVER, G., A. M. CHU, L. NI, C. CONNELLY, L. RILES et al., 2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391.
- GOTTA, M., T. LAROCHE, A. FORMENTON, L. MAILLET, H. SCHERTHAN et al., 1996 The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134: 1349–1363.
- GRANDIN, N., S. I. REED and M. CHARBONNEAU, 1997 Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11: 512–527.
- GRAVEE, S., M. LARRIVEE, P. LABRECQUE and R. J. WELLINGER, 1998 Yeast Ku as a regulator of chromosomal DNA end structure. Science 280: 741–744.
- GREENFEDER, S. A., and C. S. NEWLON, 1992 Replication forks pause at yeast centromeres. Mol. Cell. Biol. 12: 4056–4066.
- GROSSI, S., A. PUGLISI, P. V. DMITRIEV, M. LOPES and D. SHORE, 2004 Poll2, the B subunit of DNA polymerase alpha, functions in both telomere capping and length regulation. Genes Dev. 18: 992–1006.
- HAYASHI, N., and S. MURAKAMI, 2002 STM1, a gene which encodes a guanine quadruplex binding protein, interacts with CDC13 in Saccharomyces cerevisiae. Mol. Genet. Genomics **267:** 806–813.
- HECTOR, R. E., R. L. SHTOFMAN, A. RAY, B. R. CHEN, T. NYUN et al., 2007 Tellp preferentially associates with short telomeres to stimulate their elongation. Mol. Cell 27: 851–858.
- HSU, C. L., Y. S. CHEN, S. Y. TSAI, P. J. TU, M. J. WANG *et al.*, 2004 Interaction of Saccharomyces Cdc13p with Pollp, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control. Nucleic Acids Res. 32: 511–521.
- IVESSA, A. S., J. Q. ZHOU and V. A. ZAKIAN, 2000 The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100: 479–489.
- IVESSA, A. S., B. A. LENZMEIER, J. B. BESSLER, L. K. GOUDSOUZIAN, S. L. SCHNAKENBERG *et al.*, 2003 The Saccharomyces cerevisiae heli-

case Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell **12:** 1525–1536.

- JOHANSSON, E., P. GARG and P. M. BURGERS, 2004 The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J. Biol. Chem. 279: 1907–1915.
- JOHNSON, J. E., J. S. SMITH, M. L. KOZAK and F. B. JOHNSON, 2008 In vivo veritas: using yeast to probe the biological functions of G-quadruplexes. Biochimie 90: 1250–1263.
- JOHNSTON, L. H., and K. A. NASMYTH, 1978 Saccharomyces cerevisiae cell cycle mutant cdc9 is defective in DNA ligase. Nature **274:** 891–893.
- KANELLIS, P., R. AGYEI and D. DUROCHER, 2003 Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr. Biol. 13: 1583–1595.
- KAO, H. I., J. VEERARAGHAVAN, P. POLACZEK, J. L. CAMPBELL and R. A. BAMBARA, 2004 On the roles of Saccharomyces cerevisiae Dna2p and Flap endonuclease 1 in Okazaki fragment processing. J. Biol. Chem. **279**: 15014–15024.
- KEYES, B. E., and D. J. BURKE, 2009 Irc15 is a microtubule-associated protein that regulates microtubule dynamics in Saccharomyces cerevisiae. Curr. Biol. 19: 472–478.
- KLEIN, F., T. LAROCHE, M. E. CARDENAS, J. F. HOFMANN, D. SCHWEIZER et al., 1992 Localization of RAP1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. J. Cell Biol. 117: 935–948.
- KROGH, B. O., and L. S. SYMINGTON, 2004 Recombination proteins in yeast. Annu. Rev. Genet. 38: 233–271.
- KROLL, E. S., K. M. HYLAND, P. HIETER and J. J. LI, 1996 Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics 143: 95–102.
- LAHAYE, A., H. STAHL, D. THINES-SEMPOUX and F. FOURY, 1991 PIF1: a DNA helicase in yeast mitochondria. EMBO J. 10: 997–1007.
- LENDVAY, T. S., D. K. MORRIS, J. SAH, B. BALASUBRAMANIAN and V. LUNDBLAD, 1996 Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144: 1399–1412.
- LINGNER, J., T. R. HUGHES, A. SHEVCHENKO, M. MANN, V. LUNDBLAD et al., 1997 Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.
- LISBY, M., J. H. BARLOW, R. C. BURGESS and R. ROTHSTEIN, 2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118: 699–713.
- LIU, Y., H. I. KAO and R. A. BAMBARA, 2004 Flap endonuclease 1: a central component of DNA metabolism. Annu. Rev. Biochem. **73**: 589–615.
- MANGAHAS, J. L., M. K. ALEXANDER, L. L. SANDELL and V. A. ZAKIAN, 2001 Repair of chromosome ends after telomere loss in Saccharomyces. Mol. Biol. Cell 12: 4078–4089.
- MARINGELE, L., and D. LYDALL, 2002 EXO1-dependent singlestranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev. 16: 1919–1933.
- MATEYAK, M. K., and V. A. ZAKIAN, 2006 Human PIF helicase is cell cycle regulated and associates with telomerase. Cell Cycle 5: 2796–2804.
- MAYER, M. L., S. P. GYGI, R. AEBERSOLD and P. HIETER, 2001 Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7: 959–970.
- MCEACHERN, M. J., and J. E. HABER, 2006 Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75: 111–135.
- MEASDAY, V., and P. HIETER, 2002 Synthetic dosage lethality. Methods Enzymol. **350:** 316–326.
- MEASDAY, V., D. W. HAILEY, I. POT, S. A. GIVAN, K. M. HYLAND *et al.*, 2002 Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev. 16: 101–113.
- MILES, J., and T. FORMOSA, 1992 Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase. Proc. Natl. Acad. Sci. USA 89: 1276– 1280.

- MYUNG, K., C. CHEN and R. D. KOLODNER, 2001 Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411: 1073–1076.
- NAIKI, T., T. KONDO, D. NAKADA, K. MATSUMOTO and K. SUGIMOTO, 2001 Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol. Cell. Biol. 21: 5838–5845.
- NUGENT, C. I., T. R. HUGHES, N. F. LUE and V. LUNDBLAD, 1996 Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274: 249–252.
- NUGENT, C. I., G. BOSCO, L. O. ROSS, S. K. EVANS, A. P. SALINGER et al., 1998 Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8: 657–660.
- PELLICIOLI, A., C. LUCCA, G. LIBERI, F. MARINI, M. LOPES *et al.*, 1999 Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18: 6561–6572.
- PENNOCK, E., K. BUCKLEY and V. LUNDBLAD, 2001 Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell **104**: 387–396.
- PLEVANI, P., M. FOIANI, M. MUZI FALCONI, A. PIZZAGALLI, C. SANTOCANALE *et al.*, 1988 The yeast DNA polymerase-primase complex: genes and proteins. Biochim. Biophys. Acta **951**: 268–273.
- POLOTNIANKA, R. M., J. LI and A. J. LUSTIG, 1998 The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8: 831–834.
- POT, I., V. MEASDAY, B. SNYDSMAN, G. CAGNEY, S. FIELDS *et al.*, 2003 Chl4p and iml3p are two new members of the budding yeast outer kinetochore. Mol. Biol. Cell **14**: 460–476.
- QI, H., and V. A. ZAKIAN, 2000 The Saccharomyces telomerebinding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated est1 protein. Genes Dev. 14: 1777–1788.
- RIBEYRE, C., J. LOPES, J. B. BOULE, A. PIAZZA, A. GUEDIN *et al.*, 2009 The yeast Pifl helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 5: e1000475.
- ROSSI, M. L., J. E. PIKE, W. WANG, P. M. BURGERS, J. L. CAMPBELL et al., 2008 Pifl helicase directs eukaryotic Okazaki fragments toward the two-nuclease cleavage pathway for primer removal. J. Biol. Chem. 283: 27483–27493.
- RYU, G. H., H. TANAKA, D. H. KIM, J. H. KIM, S. H. BAE *et al.*, 2004 Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast. Nucleic Acids Res. **32**: 4205–4216.
- SABOURIN, M., C. T. TUZON and V. A. ZAKIAN, 2007 Telomerase and Tellp preferentially associate with short telomeres in S. cerevisiae. Mol. Cell. 27: 550–561.
- SAKAGUCHI, K., T. ISHIBASHI, Y. UCHIYAMA and K. IWABATA, 2009 The multi-replication protein A (RPA) system—a new perspective. FEBS J. 276: 943–963.
- SCHULZ, V. P., and V. A. ZAKIAN, 1994 The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76: 145–155.
- SHERMAN, F., 1991 Getting started with yeast. Methods Enzymol. 194: 3–21.
- SINGER, M. S., and D. E. GOTTSCHLING, 1994 TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266: 404–409.
- SMITH, S., S. BANERJEE, R. RILO and K. MYUNG, 2008 Dynamic regulation of single-stranded telomeres in *Saccharomyces cerevisiae*. Genetics 178: 693–701.
- SNOW, B. E., M. MATEYAK, J. PADEROVA, A. WAKEHAM, C. IORIO *et al.*, 2007 Murine Pif1 interacts with telomerase and is dispensable for telomere function in vivo. Mol. Cell. Biol. 27: 1017–1026.

- STELLWAGEN, A. E., Z. W. HAIMBERGER, J. R. VEATCH and D. E. GOTTSCHLING, 2003 Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17: 2384–2395.
- STITH, C. M., J. STERLING, M. A. RESNICK, D. A. GORDENIN and P. M. BURGERS, 2008 Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem. 283: 34129–34140.
- SUN, Z., J. HSIAO, D. S. FAY and D. F. STERN, 1998 Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281: 272–274.
- SZYJKA, S. J., C. J. VIGGIANI and O. M. APARICIO, 2005 Mrcl is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol. Cell 19: 691–697.
- TANAKA, H., G. H. RYU, Y. S. SEO, K. TANAKA, H. OKAYAMA et al., 2002 The fission yeast pfh1(+) gene encodes an essential 5' to 3' DNA helicase required for the completion of S-phase. Nucleic Acids Res. **30**: 4728–4739.
- TEIXEIRA, M. T., M. ARNERIC, P. SPERISEN and J. LINGNER, 2004 Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell 117: 323–335.
- TEO, S. H., and S. P. JACKSON, 2001 Telomerase subunit overexpression suppresses telomere-specific checkpoint activation in the yeast yku80 mutant. EMBO Rep. 2: 197–202.
- TONG, A. H., and C. BOONE, 2006 Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313: 171– 192.
- TONG, A. H., G. LESAGE, G. D. BADER, H. DING, H. XU *et al.*, 2004 Global mapping of the yeast genetic interaction network. Science **303**: 808–813.
- TOURRIERE, H., G. VERSINI, V. CORDON-PRECIADO, C. ALABERT and P. PASERO, 2005 Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell 19: 699–706.
- VAN DYKE, N., J. BABY and M. W. VAN DYKE, 2006 Stmlp, a ribosome-associated protein, is important for protein synthesis in Saccharomyces cerevisiae under nutritional stress conditions. J. Mol. Biol. 358: 1023–1031.
- VEGA, L. R., J. A. PHILLIPS, B. R. THORNTON, J. A. BENANTI, M. T. ONIGBANJO *et al.*, 2007 Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. PLoS Genet. 3: e105.
- WAGNER, M., G. PRICE and R. ROTHSTEIN, 2006 The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in *Saccharomyces cerevisiae*. Genetics **174**: 555–573.
- ZHANG, D. H., B. ZHOU, Y. HUANG, L. X. XU and J. Q. ZHOU, 2006 The human Pifl helicase, a potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids Res. 34: 1393–1404.
- ZHOU, J., E. K. MONSON, S. C. TENG, V. P. SCHULZ and V. A. ZAKIAN, 2000 Piflp helicase, a catalytic inhibitor of telomerase in yeast. Science 289: 771–774.
- ZHOU, J. Q., H. QI, V. P. SCHULZ, M. K. MATEYAK, E. K. MONSON *et al.*, 2002 Schizosaccharomyces pombe pfh1+ encodes an essential 5' to 3' DNA helicase that is a member of the PIF1 subfamily of DNA helicases. Mol. Biol. Cell **13**: 2180–2191.
- ZOU, L., and S. J. ELLEDGE, 2003 Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300: 1542–1548.

Communicating editor: E. ALANI

GENETICS

Supporting Information http://www.genetics.org/cgi/content/full/genetics.109.107631/DC1

Telomerase Is Essential to Alleviate Pif1-Induced Replication Stress at Telomeres

Michael Chang, Brian Luke, Claudine Kraft, Zhijian Lu, Matthias Peter, Joachim Lingner and Rodney Rothstein

Copyright © 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.107631

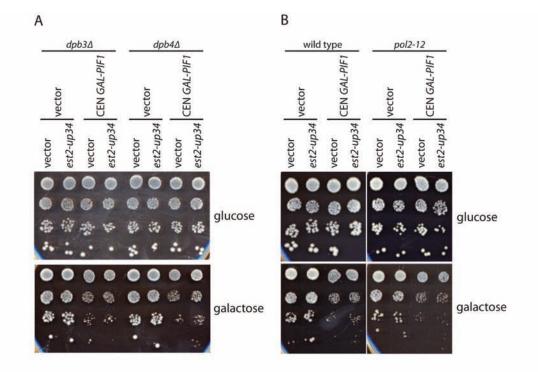


FIGURE S1.—Leading strand replication mutants are not sensitive to moderate overexpression of *PIF1*. In each panel, 10-fold serial dilutions were spotted onto media containing either glucose or galactose. (A) The indicated strains were transformed with either a vector control (pSH380) or the centromeric *GAL-PIF1* plasmid (pVS45), along with a second plasmid, either a vector control (pRS313) or a plasmid expressing *est2-up34*. (B) As in A, except strains were grown at 23°C instead of 30°C.