Quantitative Trait Loci for Aggressive Behavior in Drosophila melanogaster

Alexis C. Edwards¹ and Trudy F. C. Mackay²

Department of Genetics and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695

Manuscript received February 12, 2009

Accepted for publication April 27, 2009

ABSTRACT

Aggressive behavior is observed across animal taxa and is likely to be evolutionarily conserved. Although potentially advantageous, aggression can have social and health consequences in humans, and is a component of a number of psychiatric disorders. As a complex genetic trait, it is modulated by numerous quantitative trait loci (QTL) with allelic effects that can vary in direction and magnitude and that are sensitive to environmental perturbations. Assays to quantify aggressive behavior in *Drosophila melanogaster* have been developed, making this an ideal model system in which to dissect the genomic architecture underlying manifestation of and variation in aggressive behavior. Here, we map QTL affecting variation in aggression between two wild-type Drosophila strains. We identified a minimum of five QTL in a genomewide scan: two on chromosome 2 and three on chromosome 3. At least three and possibly all five of these QTL interact epistatically. We used deficiency complementation mapping to subdivide two linked, epistatically interacting QTL of large effect on chromosome 3 into at least six QTL, and complementation tests to mutations identified four candidate quantitative trait genes. Extensive epistasis poses a serious challenge for understanding the genetic basis of complex traits.

GGRESSIVE behavior is observed throughout the animal kingdom and can be essential for survival. Aggression is used to gain access to territory, food, or mates; in defense against predators; to protect offspring; and to gain social status in a dominance hierarchy. On the other hand, aggression can be costly, since violent interactions with others can cause injury, and aggressive displays are energetically expensive and interfere with other essential behaviors, such as feeding and mating. The persistence of high levels of genetic variation for aggression within populations (Dow and Von Schilcher 1975; Hoffmann 1988, 1989; Hoffmann and CACOYIANNI 1989) suggests that a balance of evolutionary forces acts to maintain the variation. Theoretical modeling has suggested that frequency-dependent selection could be generating genetic variation in aggression (MAYNARD SMITH and HARPER 1988). The observation that many behavioral phenotypes vary widely in a population is often attributed to life history trade-offs (CABRAL et al. 2008; MANEY 2008); recent work also suggests that animal "personalities" within a population might be adaptive (WOLF et al. 2007). Another potential explanation is that the pleiotropic nature of many genes affecting aggressive behavior subjects them to opposing

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics.109.101691/DC1.

¹Present address: Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Department of Psychiatry, P.O. Box 908126, Richmond, VA 23298-0126.

²Corresponding author: Department of Genetics, Campus Box 7614,
 North Carolina State University, Raleigh, NC 27695-7614 USA Phone:
 919-515-5810 Fax: 919-515-3355
 E-mail: trudy_mackay@ncsu.edu

or multidirectional selective pressures, maintaining variation.

In humans, aggression is often associated with impulsive behavior, and can reach pathological levels. It is a component of a number of behavioral or psychiatric disorders, such as alcoholism, borderline personality disorder, conduct disorder, and Alzheimer's disease. It can also constitute a behavioral pathology in and of itself (e.g., intermittent explosive disorder). Therefore, an understanding of the genetic basis of variation in aggressive behavior is important from the dual perspectives of evolutionary genetics and human health.

Considerable work on the neurobiology and genetics of aggressive behavior in mammals and invertebrates has revealed key molecules required to mediate and modulate aggression, in particular biogenic amines. Normal levels of serotonin (5-hydroxytryptophan, 5-HT) inhibit aggressive behavior in vertebrates, and decreased levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-HT, are associated with increased levels of impulsivity and aggression (MANUCK et al. 1999; Nelson and Chiavegatto 2001). In invertebrates, increased 5-HT results in increased aggressive behavior (EDWARDS and KRAVITZ 1997; HUBER et al. 1997; Baier et al. 2002; Dierick and Greenspan 2007). Monoamine oxidase A (MAOA), which catabolizes 5-HT as well as dopamine and norepinephrine, has also been associated with aggressive behavior in humans; males lacking a functional copy of MAOA (which is Xlinked) are highly aggressive (Brunner et al. 1993), and expression levels of brain MAOA are inversely correlated with aggression (ALIA-KLEIN et al. 2008). The noradrenergic (DE Almeida et al. 2005) and dopaminergic (Haller et al. 1998) systems also modulate aggressive behavior. The Drosophila homolog of noradrenaline, octopamine, also appears to modulate aggression, since males lacking octopamine display hardly any aggressive behaviors (Baier et al. 2002; Hoyer et al. 2008). Polymorphisms in catecholamine-O-methyltransferase, which degrades dopamine and norepinephrine, are also associated with variation in aggression in schizophrenic men (Han et al. 2004).

The neurotransmitters nitric oxide (NO) and yaminobutyric acid (GABA) (MICZEK et al. 2003) also modulate aggressive behavior. In humans, haplotypes in the gene encoding nitric oxide synthase (NOS) are associated with increased aggression and/or suicidal behavior (Rujescu et al. 2008). In mice, knocking out expression of neuronal NOS is associated with increased aggression (Nelson et al. 1995), although this may be attributable to the effect of the knockout on 5-HT (CHIAVEGATTO et al. 2001). Neuropeptide Y and its invertebrate homolog, Neuropeptide F, affect aggression in mammals (KARL et al. 2004; GAMMIE et al. 2007; Karl and Herzog 2007) and Drosophila (Dierick and Greenspan 2007). In Drosophila, correct expression of the male-specific transcript of fruitless, a gene in the sexdetermination pathway, is required for executing male aggressive behaviors (LEE and HALL 2000; VRONTOU et al. 2006; Certel et al. 2007; Chan and Kravitz 2007).

As a quantitative trait, we expect natural variation in levels of aggression to be influenced by segregating alleles at multiple interacting loci with varying effects that depend on the social and physical environment. Recent studies documenting correlated responses of the transcriptome to artificial selection for divergent levels of aggressive behavior from wild-derived (EDWARDS et al. 2006) and laboratory (DIERICK and GREENSPAN 2006) strains of Drosophila hint that the genetic basis of natural variation in this behavior may be very complex. However, these studies are unable to discriminate which of the correlated transcriptional responses are caused by polymorphic alleles at loci directly affecting aggressive behavior and which are transregulated by the causal polymorphisms, or hitchhike along with the selected causal polymorphisms. Therefore, we need to use QTL mapping to identify causal loci affecting variation in aggressive behavior between wild-type lines.

Here, we map QTL affecting the difference in aggressive behavior between two laboratory stocks: *Oregon-R* (*Ore*), a standard laboratory wild-type strain (LINDSLEY and ZIMM 1992), and *2b*, a Russian strain selected for low male mating ability (Kaidanov 1990). Recombinant inbred lines (RILs) derived from these strains have been used previously to map QTL affecting a wide variety of quantitative traits: life span (Nuzhdin *et al.* 1997; Leips and Mackay 2000; Pasyukova *et al.* 2000; Vieira *et al.* 2000; Leips and Mackay 2002; Reiwitch and Nuzhdin 2002; Lai *et al.* 2007); starvation (Vieira *et al.* 2000;

HARBISON et al. 2004); heat and cold stress resistance (Morgan and Mackay 2006); reproductive success (FRY et al. 1998; WAYNE et al. 2001); numbers of sensory bristles (Gurganus et al. 1998); sex comb teeth (Nuzhdin and REIWITCH 2000) and ovarioles (WAYNE et al. 2001); flight velocity and metabolic traits (Montooth et al. 2003); courtship song (GLEASON et al. 2002); and olfactory (Fanara et al. 2002), male mating (Moehring and MACKAY 2004), and locomotor (JORDAN et al. 2006) behavior. We used a population of introgression lines derived from the recombinant inbred lines to map QTL affecting aggressive behavior. We inferred that there are a minimum of five QTL affecting aggressive behavior in these strains and that at least three of these QTL interact epistatically. Two of the three epistatic QTL were localized to a small region on the left arm of the third chromosome. We used complementation tests to deficiencies and their co-isogenic wild-type strains to map the epistatic QTL in this region with higher resolution. Surprisingly, the region fractionated into at least six QTL and complementation tests to mutations implicated four novel candidate genes affecting variation in aggression between Ore and 2b. The expression and function of these genes informs our understanding of the genetic influences on aggression and lays the foundation for future research.

MATERIALS AND METHODS

Drosophila stocks: We derived 20 introgression lines from the population of 98 $Ore \times 2b$ RILs (Nuzhdin et al. 1997). We screened the RIL genotypes, one chromosome at a time, for partially overlapping segments of the 2b genome in an otherwise Ore background, and chose 20 segmental introgressions that together constitute the entire 2b genome. We then substituted each of the chromosomes containing a 2b introgressed fragment into the Ore background, by standard crosses using balancer chromosomes that had themselves previously been substituted into Ore. The cytological limits of the introgressed portion of the 2b genome, as assessed by insertion sites of roo transposable element markers, are given in supporting information, Table S1.

We obtained DrosDel (RYDER et al. 2007) and Exelixis (PARKS et al. 2004) deficiency (Df) stocks with defined molecular breakpoints that had been generated in a w^{II18} isogenic background and stocks with mutations in positional candidate genes from the Bloomington Drosophila Stock Center, Bloomington, Indiana.

Assay to quantify aggressive behavior: Eight male flies of the same genotype, aged 3–7 days, were transferred without anesthesia to an empty vial and deprived of food for 90 minutes. They were then exposed to a droplet of standard food and allowed to acclimate for 2 minutes, after which they were observed for 2 minutes. The number of aggressive encounters observed during this period was recorded as the aggression score for the replicate. The average of these scores is the mean aggression score (MAS). All assays were performed between 8 and 11 AM, at 25° and 75% humidity.

QTL mapping using introgression lines: We scored 20 replicate samples of each introgression line for aggressive behavior. We partitioned variance in aggressive behavior between (L) and within (E) introgression lines using the

one-way random effects ANOVA model $Y = \mu + L + E$. We estimated the broad sense heritability (H^2) of aggressive behavior as $H^2 = \sigma_L^2/(\sigma_L^2 + \sigma_E^2)$, where σ_L^2 and σ_E^2 are the among- and within-line variance components, respectively. We then used t-tests to assess whether the mean level of aggression in each introgression line was significantly different from Ore and/or 2b. Introgression lines with significantly different MAS scores from Ore contain a 2b QTL allele affecting aggressive behavior.

Deficiency complementation mapping: The DrosDel and Exelixis deficiency stocks have isogenic genomic background control lines (w^{1118}). We crossed *Ore* and 3-889 to each deficiency stock and to the control, and assessed aggressive behavior for 10 replicates of each of four genotypes: Df/Ore, $Df/3-88\mathcal{H}$, w^{1118}/Ore , and $w^{1118}/3-88\mathcal{H}$. The statistical model used to analyze the behavioral data is a two-way ANOVA: $Y = \mu + L + G + L \times G + E$, where μ is the overall mean, L is the main effect of line (Ore or 3-8891), G is the main effect of genotype (Df or w^{1118}), and E is the environmental variance. A significant $L \times G$ term indicates quantitative failure to complement. As for all complementation tests, failure to complement could arise from different effects of Ore and 2b alleles at one locus in the region uncovered by the deficiency, or nonallelic interactions. Note that failure to complement due to epistasis is minimized in these tests, because the Df strains have no additional mutations and a co-isogenic control strain rather than a balancer chromosome is used as the wildtype allele. Also, the introgression design limits epistasis to other QTL in the introgressed region.

Mutant complementation tests: The test for quantitative failure to complement using mutants is similar to that for deficiencies. However, since no genomic control line is available, we instead assessed aggressive behavior for 10 replicates of each of the following genotypes: mutant/Ore, mutant/3-88A, Bal/Ore, and Bal/3-88A, where Bal is the balancer chromosome over which the mutation is maintained. The same ANOVA model was used, and the same criteria were applied to assess quantitative complementation. We excluded cases of failure to complement where the difference between Bal/Ore and Bal/3-88A means was not significantly different from that between mutant/Ore and mutant/3-88A means. Mutants meeting these criteria were retested using 20 replicates per genotype. Results from both blocks of testing were pooled and tested together using the model

$$y = \mu + L + G + B + L \times G + L \times B + G \times B + L \times G \times B + E$$

where L is the line term, G is the genotype term, and B is the block term.

All statistical analyses were conducted using Statistical Analysis Software Version 8.2 or JMP Version 7.0 (SAS; Cary, NC).

RESULTS AND DISCUSSION

QTL mapping using introgression lines: A mapping population of RILs derived from *Ore* and *2b* has been used to map QTL affecting a large number of complex traits. We assessed whether these strains also differed in aggressive behavior and found that the MAS of *Ore* males (20.82 \pm 2.25) was greater than twice that of *2b* males (8.55 \pm 1.17) (t = 2.09, P < 0.0001). We hypothesized that we could improve the power to map QTL while reducing the number of lines to be scored if we constructed a population of segmental introgression

lines, each of which contains a fragment of the *2b* genome in an otherwise *Ore* background, but which together comprise the entire 2b genome (Figure 1, Table S1).

There was significant variation in mean aggression scores among the 20 introgression lines ($F_{19, 359} = 10.72$, P < 0.0001; Figure 1). The estimate of broad sense heritability of aggression levels in the introgression lines is $H^2 = 0.33$. All but two lines (2-16 and 3-34 \mathcal{A}) exhibited significantly (P < 0.05) higher levels of aggression than 2b. Five lines differed from Ore: 2-16, 3-17, 3-31 \mathcal{A} , and 3-34 \mathcal{A} were less aggressive and line 3-88 \mathcal{A} was more aggressive.

We used these data to infer the locations of QTL affecting the difference in aggressive behavior between *Ore* and *2b*. None of the *X* chromosome introgressions were significantly different from *Ore*, and all were different from *2b*. The most parsimonious inference is that there are no *X*-linked QTL affecting the difference in aggressive behavior between these strains (Figure 1).

The MAS of chromosome 2 introgression line 2-16 is significantly different from Ore, but not 2b, and therefore contains at least one QTL affecting aggressive behavior. However, the introgressions in lines 2-18 and 2-819 together include the entire 2b fragment in 2-16, which is not consistent with a single QTL model. There are three possible two-QTL models that explain this observation (Figure 1). (1) There is a QTL with a negative effect on aggressive behavior between 29F;30D and another with an equal positive effect in the region of 27B. Line 2-16 contains only the negative effect QTL, while lines 2-789 and 2-18 contain both QTL. (2) There is a QTL with a negative effect on aggressive behavior between 34EF;38E and another with an equal positive effect between 39A;50B. Line 2-16 contains only the negative effect QTL, while line 2-819 contains both QTL. (3) Line 2-16 contains two QTL between 29F;30D and 34EF;38E that interact epistatically to reduce the MAS; neither QTL on its own has a detectable effect on aggressive behavior. These models are indistinguishable on the basis of the available data.

There are at least three QTL on chromosome 3. Lines 3-34*A*, 3-31*A*, 3-17, and 3-27 do not have statistically different MAS from each other (data not shown); 3-349, 3-319, and 3-17 have significantly lower MAS than Ore, and 3-319, 3-17, and 3-27 have significantly higher MAS than 2b. Taken together, these results are consistent with a QTL affecting reduced aggressive behavior in the 2b region common to all these introgressions, from 97D;100F. Surprisingly, the MAS of line 3-88A, which includes only the 65D;69D region of the 2b genome, is significantly different from both *Ore* and *2b*, and is nearly twice as aggressive as Ore. Therefore, the effect of one or more QTL in this interval must be suppressed by another QTL elsewhere on the 2b chromosome 3. Further, this introgression is completely overlapped by the introgressions in 3-15 and 3-5, indicating that there

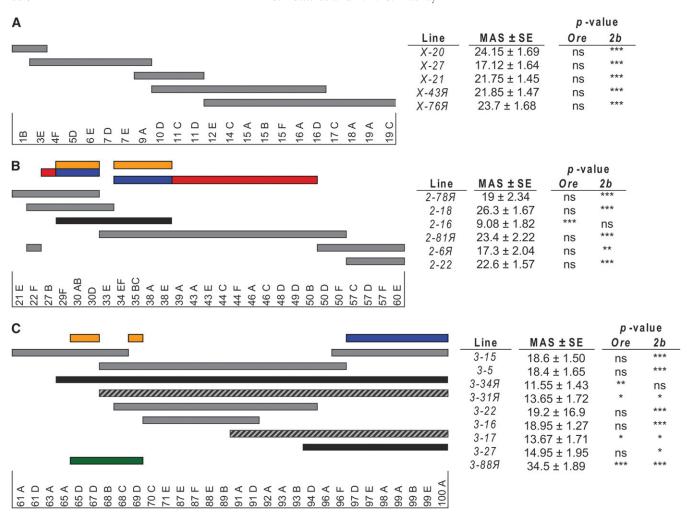


FIGURE 1.—QTL mapping using introgression lines. Gray bars represent the region of the genome derived from the 2b parental line for each introgression line on (A) the X chromosome, (B) chromosome 2, and (C) chromosome 3. The cytological locations of roo transposable element markers are depicted below each set of lines. Gray bars denote introgressions with a mean aggression score (MAS) that is not significantly different from Ore but is different from 2b; black bars denote introgressions with MAS that are significantly different from Ore but not significantly different from 2b, and gray/black bars denote introgressions with MAS that are intermediate between Ore and 2b, and significantly different from both parental lines. The green bar denotes an introgression with a MAS that is significantly greater than either parent line. The QTL locations are inferred using this physical map in conjunction with the MAS of each introgression line and statistical comparisons of the MAS between the introgression line and the parental lines. Orange bars represent QTL with epistatic effects; red bars indicate QTL with positive additive effects; and blue bars represent QTL with negative additive effects. Three possible models explain the QTL on chromosome 2, shown here in different rows (see text for explanation). Significance levels were determined using Student's t-tests. t-e t-e

must be a least two epistatic QTL in the 65D;69D region, one between 65D;67D and another in the region of 69D (the region of nonoverlap of 3-15 and 3-5). We must further postulate that neither epistatic QTL has an effect on its own, but that the effect of both are suppressed by the QTL at 97D;100F, since line 3-34A contains all three QTL, but is not significantly different from lines 3-17 and 3-27, which only contain the 97D;100F QTL (Figure 1).

Therefore, of the five QTL affecting aggressive behavior, at least three and possibly all five interact epistatically. We previously inferred that epistatic interactions were prevalent among loci affecting natural variation in aggressive behavior, since the estimate of additive genetic variance from response to artificial selection (Edwards *et al.* 2006) was much less than the estimate of the total genetic variance among inbred lines derived from the same base population as the selection lines (A. C. Edwards, J. F. Ayroles, E. A. Stone, M. A. Carbone, R. F. Lyman and T. F. C. Mackay, unpublished data). In the light of extensive epistasis shaping the genetic architecture of aggressive behavior, we cannot be certain that there are no QTL for aggressive behavior on the *X* chromosome, only that we cannot detect them with the available genotypes. Furthermore, this experimental design enables us to detect QTL affecting aggressive behavior and infer the presence of interactions among them, but we do not

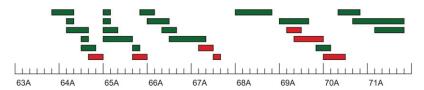


FIGURE 2.—Deficiency complementation mapping. The bars depict the approximate cytological locations of deficiencies used for complementation mapping. Red bars indicate deficiencies that fail to complement QTL affecting aggressive behavior; green bars represent deficiencies that complement QTL affecting aggression.

have enough information to estimate all additive and epistatic effects.

Deficiency complementation mapping: There are at least two epistatically interacting QTL with a large effect on aggressive behavior in the 65D;69D region. Therefore, we used complementation to deficiencies (Pasyukova et al. 2000) to map these QTL with higher resolution. Deficiency mapping has been used to successfully finemap QTL affecting variation between *Ore* and *2b* for many quantitative traits (Pasyukova et al. 2000; Fanara et al. 2002; De Luca et al. 2003; Harbison et al. 2004; Moehring and Mackay 2004; Jordan et al. 2006). These analyses typically reveal that single QTL fractionate into multiple linked QTL.

The precise breakpoints of this QTL are somewhere between 65A;65D and 69D;70C; therefore we used deficiencies spanning the 65A;70C cytological interval. We introduced two improvements over previous deficiency complementation tests. First, introgression line 3-889 contains this region of the 2b genome in an otherwise Ore genetic background. Therefore we used 3-889 and *Ore* as the parent lines for the complementation tests. This limits the potential for noncomplementation due to epistatic interactions to interactions between QTL in this region only. Second, we used deficiency stocks from the DrosDel and Exelixis (PARKS et al. 2004; Ryder et al. 2007) collections. These deficiencies have been constructed in isogenic backgrounds and do not contain any additional mutations, which reduces the likelihood of identifying a region that fails to complement due to epistatic interactions between mutations carried on the deficiency chromosome, and not the deficiency itself. Furthermore, the breakpoints of the deficiencies are molecularly defined, enabling more precise mapping.

We crossed Ore and 3-88% to 27 deficiency stocks (Df/Bal), where Bal is a balancer chromosome) with overlapping breakpoints spanning the QTL region (Figure 2), and to a w^{II18} control line, which had the appropriate isogenic background in which the deficiency stocks were constructed. We scored the aggressive behavior of F_1 males of four genotypes: Df/Ore, Df/3-88%, w^{II18}/Ore , and $w^{II18}/3-88\%-3$. We analyzed the data for each deficiency by factorial ANOVA (Table 1), which partitions variation among the genotypes into the cross-classified main effects of line (Ore, 3-88%), genotype (Df, w^{II18}) and the line \times genotype interaction. We inferred complementation if the line \times genotype interaction term was not significant, as this indicates that the difference in phenotype between Ore and 3-88% was

the same in the Df and w^{III8} chromosome backgrounds. We inferred failure to complement if the line \times genotype interaction was significant, which indicates the difference in aggressive behavior between Ore and 3-88 $\mathcal H$ varied between the Df and w^{III8} chromosome backgrounds. We then delineated the QTL locations by the region of nonoverlap of deficiencies complementing the trait phenotype with those that fail to complement the trait phenotype.

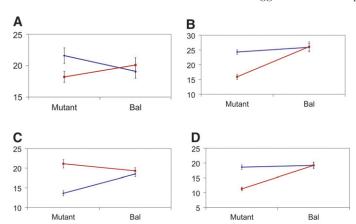
Note that the interpretation of failure to complement in these tests is complicated by the epistatic gene action of the QTL in the 65A;65D region from 2b, when introgressed in the Ore background. The QTL in the 65D;67D region do not have a main effect on aggressive behavior; neither do the QTL in 69D. The hyperaggressive phenotype only occurs when both QTL alleles from the 2b strain co-occur. Thus, if we observe that a deficiency fails to complement the aggressive phenotype, it must simultaneously both uncover one of the QTL in the introgressed region, and interact epistatically with another.

Six of the deficiency stocks exhibited significant (P <0.05) quantitative failure to complement (22% of those tested). Four of these tests were significant following a Bonferroni correction for multiple tests (Table 1). Thus, the QTL region was fractionated into multiple smaller QTL. Four of the QTL were in the first of the epistatic QTL inferred from the analyses of the introgression lines (64E5;64F5, 65E8;65F4, 67B10;67C5, and 67D1;67D2), while the other two QTL were in the region of the second epistatic QTL (69B5;69C4 and 69C4;69F6). The effects of all six of these QTL were in the same direction, with the $Df/3-88\mathcal{H}$ genotype, which elucidates the effect of the 2b allele in that region, exhibiting higher aggression than the Df/Ore genotype. Each of these significant deficiencies must uncover one of the QTL alleles and interact epistatically with another QTL allele. We cannot map the QTL with which the Dfs interact; all could interact with a single QTL not uncovered by any of the deficiencies, or genes in the regions uncovered by the deficiencies could interact with each other.

An additional QTL in the region of the second epistatic QTL, 70A3;70C10, approached formal significance (P = 0.0554). We included candidate genes from this region in complementation tests to mutants, although the direction of effect of this QTL was opposite to the others, with the *Df/Ore* allele exhibiting higher levels of aggression.

The 65A;70C cytological interval encompasses nearly 1000 genes mapped to the sequence. Deficiency complementation mapping narrowed the QTL intervals to \sim 300

TABLE 1
Deficiency complementation tests


	Deficiency breakpoints	Mean aggression score (SE)		ANOVA P-values		
Deficiency genotype		Df/88 MAS	Df/Ore MAS	Line (L)	Genotype (G)	$L \times G$
w^{1118} ; $Df(3L)ED4341/TM6C$, Sb^{1}	63F6;64B11	12.1 (1.12)	12.0 (1.21)	0.9820	0.0082	0.9224
w^{1118} ; $Df(3L)ED4342/TM6C$, Sb^{1}	64B1;64B13	15.6 (1.54)	16.1 (1.89)	0.8175	0.8947	0.9054
w^{1118} ; $Df(3L)ED210/TM6C$, Sb^{1}	64B11;64D1	22.0 (1.75)	18.3 (1.86)	0.2237	0.0026	0.1850
w^{1118} ; $Df(3L)Exel6105/TM6B$, Tb^{1}	64D1;64D6	16.9 (0.98)	19.9 (0.66)	0.0499	0.0103	0.4879
w^{1118} ; $Df(3L)Exel6106/TM6B$, Tb^{1}	64D6;64E2	22.8 (1.04)	22.5 (1.83)	0.6360	< 0.0001	0.4709
w^{1118} ; $Df(3L)Exel6107/TM6B$, Tb^{1}	64E5;64F5	30.3 (2.30)	21.8 (1.87)	0.0089	< 0.0001	0.0003*
w^{1118} ; $Df(3L)Exel7210/TM6B$, Tb^{1}	65A1;65A5	17.5 (0.98)	20.2 (2.23)	0.0997	0.0080	0.6151
w^{1118} ; $Df(3L)Exel8101/TM6B$, Tb^{1}	65A3;65A9	21.1 (1.84)	18.5 (1.46)	0.6404	0.0007	0.1048
w^{1118} ; $Df(3L)ED211/TM6C$, Sb^{1}	65A9;65B4	11.9 (1.57)	11.3 (0.94)	0.8709	0.0036	0.7789
w^{1118} ; $Df(3L)ED212/TM6C$, Sb^{1}	65A9;65D5	21.4(2.77)	18.8 (1.05)	0.4203	0.0043	0.3622
w^{1118} ; $Df(3L)Exel6110/TM6B$, Tb^{1}	65E4;65E8	16.5 (1.15)	17.0 (1.11)	0.4007	0.2697	0.6828
w^{1118} ; $Df(3L)Exel6111/TM6B$, Tb^{1}	65E7;65F4	24.3 (1.24)	16.9 (1.02)	0.0114	< 0.0001	0.0002*
w^{1118} ; $Df(3L)Exel8104/TM6B$, Tb^{1}	65F7;66A4	19.3 (1.63)	15.7 (1.16)	0.4032	0.1167	0.0519
w^{1118} ; $Df(3L)ED4408/TM6C$, Sb^{1}	66A22;66C5	12.8 (1.32)	10.2 (1.44)	0.3737	0.0032	0.3146
w^{1118} ; $Df(3R)Exel7317/TM6B$, Tb^{1}	66C5;66D3	17.8 (0.88)	16.2 (1.12)	0.9453	0.1820	0.1838
w^{1118} ; $Df(3L)ED4421/TM6C$, Sb^{1}	66D14;67B1	11.9 (1.89)	8.8 (1.89)	0.3173	0.0005	0.2679
w^{1118} ; $Df(3L)Exel6114/TM6B$, Tb^{1}	67B10;67C5	18.5 (1.21)	15.3 (0.87)	0.4438	0.2143	0.0450
w^{1118} ; $Df(3L)Exel9048/TM6B$, Tb^{1}	67D1;67D2	32.2 (1.33)	18.1 (1.27)	< 0.0001	< 0.0001	<0.0001*
w^{1118} ; $Df(3L)ED4470/TM6C$, Sb^{1}	68A6;68E1	14.0 (1.86)	11.6 (2.20)	0.4551	0.0590	0.3935
w^{1118} ; $Df(3L)ED4483/TM6C$, Sb^{1}	69A4;69D3	17.7 (1.17)	17.0 (2.03)	0.8489	0.2353	0.7615
w^{1118} ; $Df(3L)ED215/TM6C$, Sb^{1}	69B5;69C4	16.9 (1.93)	10.9 (0.72)	0.0372	0.2946	0.0282
w^{1118} ; $Df(3L)ED4486/TM6C$, Sb^{1}	69C4;69F6	23.9 (2.16)	14.3 (1.59)	0.0018	0.0212	0.0013*
w^{1118} ; $Df(3L)Exel6261/TM6B$, Tb^{1}	69F6;70A3	18.5 (1.44)	15.8 (1.09)	0.5931	0.1556	0.0805
w^{1118} ; $Df(3L)ED4502/TM6C$, Sb^{1}	70A3;70C10	14.9 (1.08)	20.3 (1.45)	0.0424	0.1539	0.0554
w^{1118} ; $Df(3L)ED4543/TM6C$, Sb^{1}	70C6;70F4	14.6 (2.34)	11.9 (1.18)	0.3929	0.1078	0.3366
w^{1118} ; $Df(3L)ED217/TM6C$, Sb^{1}	70F4;71E1	20.0(1.75)	17.8 (1.43)	0.4725	0.0267	0.4068
w^{1118} ; $Df(3L)ED218/TM6C$, Sb^{1}	71B1;71E1	17.6 (0.90)	15.6 (0.91)	0.4800	0.4708	0.4072
w^{1118} (Exel control)	N/A	14.8 (0.67)	16.2 (0.96)	N/A	N/A	N/A
w^{1118} (ED control)	N/A	15.6 (0.80)	15.7 (1.16)	N/A	N/A	N/A

Deficiency stocks used in quantitative complementation tests. ED denotes DrosDel deficiencies and Exel indicates Exelixis deficiencies. The isogenic background stocks for both sets of deficiencies are listed as controls. Boldface type indicates deficiencies that failed to complement the QTL for aggressive behavior (P-values of the $L \times G$ term from ANOVA < 0.05). *Significant following a Bonferroni correction for multiple tests. Df(3L)ED4502 (results in italics) was marginally significant and was therefore included in complementation tests to mutations.

genes: 43 in 64E5;F5, 17 in 65E8;F4, 49 in 67B10;C5, 14 in 67D1;D2, 22 in 69B5;C4, 86 in 69C4;F6, and 70 in 70A3;70C10. Many of the genes in these regions affect metabolism and development.

Mutant complementation tests: We used quantitative complementation tests to mutations in positional candidate genes in QTL intervals defined by deficiency complementation tests to identify candidate genes corresponding to QTL affecting the difference in aggressive behavior between *Ore* and *2b*. The logic of quantitative complementation tests to mutations is the same as that for deficiency complementation tests. However, the mutations are maintained over balancer chromosomes with visible markers, and they are not all available in a common isogenic background. Therefore, we crossed each mutant stock to both *3-889* and *Ore* and measured the aggressive behavior of F₁ males of the four genotypes: *mutant/3-889*, *mutant/Ore*, *Bal/3-889*, and *Bal/Ore*, where *Bal* is the balancer chromosome.

We initially screened 58 mutants in positional candidate genes from all seven QTL defined by the deficiency complementation tests (Table S2). Where possible, we used P-element insertional mutations that were generated in the same background. We also chose stocks with few additional mutations, and included mutations in computationally predicted genes. The interpretation of the complementation tests to mutations is not as clearcut as that from the complementation tests to deficiencies, because the genetic background of the mutant and control (balancer) genotypes are not co-isogenic. If the difference between 88 A and Ore were due to alleles with strictly additive effects, this would not matter. However, if epistasis is extensive, the failure to complement could be attributable to differences between the mutant and balancer genotypes that lie outside the $88\mathcal{A}$ introgression region, but which interact with QTL in this region. Therefore, we imposed the additional filter that the pattern of failure to complement in these tests must be

consistent with an interaction with the mutant chromosome and not the balancer chromosome.

Of the 58 mutants tested, $12 \ (\sim 21\%)$ exhibited quantitative failure to complement, inferred by a significant (P < 0.05) line \times genotype interaction term. We excluded five of these mutations from further analyses because the difference between Bal/Ore and Bal/3-889 means was not significantly different from that between mutant/Ore and mutant/3-88\mathcal{H} means. We retested the remaining seven mutants, using twice the number of replicates as in the initial screen, and confirmed four mutations that exhibited quantitative failure to complement the QTL alleles affecting the difference in aggressive behavior between Ore and 3-88Я: CG11006, CG10754, mutagen-sensitive 312, and Ral guanine nucleotide exchange factor 2 (Figure 3). None of these loci have been previously associated with aggressive behavior. The 3-88A/mutant genotype exhibited higher levels of aggression than the *Ore/mutant* genotype for CG10754, CG11006, and Rgl; this observation was reversed for the mus312 mutant. That flies hemizygous for the 889-3 allele at all loci are not the more aggressive underscores the complex nature of QTL affecting aggression. The cumulative effects and potential epistatic interactions at these and additional, unidentified, loci must be teased apart in great detail, as they are neither necessarily predictable nor intuitive.

We did not identify candidate genes in the 64E5;64F5, 67B10;67C5, 67D1;67D2, and 69B5;69C4 QTL, and it is possible there are additional candidate genes in the QTL in which we did identify a candidate gene. Ideally, all positional candidate genes should be screened, but there were many of the 300 genes for which no mutation was available, and we did not test mutations in candidate genes when the stock contained multiple additional mutations.

Candidate quantitative trait genes for aggressive behavior: CG11006 has four predicted transcripts and is annotated as being involved in "cellular component organization and biogenesis" (Lyne et al. 2007). CG11006 is highly expressed in the brain, ovary, and male accessory glands (CHINTAPALLI et al. 2007). The CG11006 protein interacts with 10 other gene products, many of which are also computationally predicted

FIGURE 3.—Mutant complementation tests. Means and standard errors of aggression scores (*y*-axis) are depicted for the four genes that exhibit quantitative failure to complement *Ore* and *3-889* alleles. The blue lines represent the *3-889* line, and the red lines represent the *Ore* line. Genotype is depicted on the *x*-axis, such that four genotypes are shown: *Ore/Bal*, *3-889/Bal*, *Ore/mutant*, and *3-889/mutant*. (A) *CG10754* ^{[03161}; (B) *CG11006* ^[EV12079]; (C) *mus312* ^{D1}; and (D) *Rgt* ^[CT000359].

(GIOT *et al.* 2003). However, those that have been described function in central nervous system development, bristle morphogenesis, and calcium ion binding. It is orthologous to the human DMD gene, which is implicated in both Becker and Duchenne muscular dystrophy (Wood *et al.* 1987; BOYCE *et al.* 1991).

CG10754 is adjacent to and partially overlapping with CG11006. CG10754 has one predicted transcript, is annotated to function in RNA splicing, metabolism, and zinc binding (Lyne et al. 2007), and is expressed in the ovary and male accessory glands (Chintapalli et al. 2007). No gene ontology information is available for the two predicted gene products with which CG10754 interacts (Giot et al. 2003). Variation in CG10754 transcript abundance is associated with chill coma recovery time (Ayroles et al. 2009) and sleep behavior (Harbison et al. 2009) in a reference panel of inbred lines derived from a natural population.

mutagen-sensitive 312 (mus312) has three transcripts, and functions in DNA damage recognition and repair, protein binding, and metabolism (Lyne et al. 2007). mus312 is expressed in the ovary and testes, as well as other tissues (Chintapalli et al. 2007). The MUS312 protein interacts with CG5410 and CG8942 gene products, which are involved in mitochondrial transport and Wnt receptor signaling, respectively (Giot et al. 2003).

Ral guanine nucleotide exchange factor 2 (Rgl) encodes four transcripts and is involved in G-protein coupled receptor and tyrosine kinase signaling (Lyne et al. 2007). It is highly expressed in the brain, crop, ovary, and male accessory glands (Chintapalli et al. 2007). RGL interacts with CG2091, encoded by a computationally predicted gene with no known function (Giot et al. 2003). Rgl is orthologous to the human gene SOS1, which is implicated in the dysmorphic Noonan syndrome (Roberts et al. 2007; Tartaglia et al. 2007).

The four candidate quantitative trait genes affecting the difference in aggressive behavior between *Ore* and *3-889* have little in common other than that they are all expressed in reproductive tissues. *CG10754* and *Rgl* are potentially involved in neurotransmission through their roles in zinc binding and as a G-protein coupled receptor, respectively.

Complex genetic architecture of aggressive behavior: We have identified four novel candidate genes affecting natural variation in aggressive behavior in a small genomic region, in two laboratory strains not selected for aggressive behavior. The QTL regions interact epistatically: it remains to be seen how the candidate genes interact, and what the gene(s) are in the 2b 97D;100F QTL region that suppress the effect of the 2b 65D;69D QTL on aggressive behavior. Extensive epistasis poses a serious challenge for understanding the genetic basis of complex traits using linear models of genotype-phenotype associations. The novel candidate genes were not implicated in previous studies that identified large numbers of potential candidate genes affecting aggressive behavior from whole genome expression profiling of genetically divergent strains recently derived from nature (EDWARDS et al. 2006, 2008). This is not surprising, since different loci can affect variation in complex traits in different strains. Further, the four loci described in this report may not affect aggression through differences in gene expression; they may differ in expression but these differences were too small to detect in the previous studies; or differences in gene expression at a different developmental stage than young adults (when the transcriptional profiles were obtained) are important. Nevertheless, these results highlight the utility of unbiased genome scans for naturally segregating QTL for identifying novel genes and genetic networks affecting complex behaviors.

This work has been supported by National Institutes of Health grants GM-R01 GM076083 (to T.F.C.M.) and F31 MH 74161 (to A.C.E.). This is a publication of the W. M. Keck Center for Behavioral Biology

LITERATURE CITED

- ALIA-KLEIN, N., R. Z. GOLDSTEIN, A. KRIPLANI, J. LOGAN, D. TOMASI et al., 2008 Brain monoamine oxidase A activity predicts trait aggression. J. Neurosci. 28: 5099–5104.
- Ayroles, J. F., M. A. Carbone, E. A. Stone, K. W. Jordan, R. F. Lyman et al., 2009 Systems genetics of complex traits in *Drosophila melanogaster*. Nat. Genet. **41:** 299–307.
- BAIER, A., B. WITTEK and B. BREMBS, 2002 *Drosophila* as a new model organism for the neurobiology of aggression? J. Exp. Biol. **205**: 1233–1240.
- BOYCE, F. M., A. H. BEGGS, C. FEENER and L. M. KUNKEL, 1991 Dystrophin is transcribed in brain from a distant upstream promoter. Proc. Natl. Acad. Sci. USA 88: 1276–1280.
- BRUNNER, H. G., M. R. NELEN, P. VAN ZANDVOORT, N. G. ABELING, A. H. VAN GENNIP et al., 1993 X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am. J. Hum. Genet. 52: 1032–1039.
- CABRAL, L. G., B. R. FOLEY and S. V. NUZHDIN, 2008 Does sex trade with violence among genotypes in *Drosophila melanogaster?* PLoS ONE 3: e1986.
- Certel, S. J., M. G. Savella, D. C. Schlegel and E. A. Kravitz, 2007 Modulation of Drosophila male behavioral choice. Proc. Natl. Acad. Sci. USA 104: 4706–4711.
- CHAN, Y. B., and E. A. KRAVITZ, 2007 Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in *Drosophila melanogaster*. Proc. Natl. Acad. Sci. USA 104: 19577–19582.

- Chiavegatto, S., V. L. Dawson, L. A. Mamounas, V. E. Koliatsos, T. M. Dawson *et al.*, 2001 Brain serotonin dysfunction accounts for aggression in male mice lacking neuronal nitric oxide synthase. Proc. Natl. Acad. Sci. USA **98**: 1277–1281.
- CHINTAPALLI, V. R., J. WANG and J. A. Dow, 2007 Using FlyAtlas to identify better *Drosophila melanogaster* models of human disease. Nat. Genet. **39:** 715–720.
- De Almeida, R. M., P. F. Ferrari, S. Parmigiani and K. A. Miczek, 2005 Escalated aggressive behavior: dopamine, serotonin and GABA. Eur. J. Pharmacol. **526**: 51–64.
- De Luca, M., N. V. Roshina, G. L. Geiger-Thornsberry, R. F. Lyman, E. G. Pasyukova *et al.*, 2003 *Dopa decarboxylase (Ddc)* affects variation in Drosophila longevity. Nat. Genet. **34:** 429–433.
- DIERICK, H. A., and R. J. Greenspan, 2006 Molecular analysis of flies selected for aggressive behavior. Nat. Genet. 38: 1023–1031.
- DIERICK, H. A., and R. J. Greenspan, 2007 Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat. Genet. 39: 678–682.
- Dow, M. A., and F. Von Schilcher, 1975 Aggression and mating success in *Drosophila melanogaster*. Nature **254:** 511–512.
- EDWARDS, A. C., S. M. ROLLMANN, T. J. MORGAN and T. F. C. MACKAY, 2006 Quantitative genomics of aggressive behavior in *Drosophila* melanogaster. PLoS Genet. 2: e154.
- EDWARDS, D. H., and E. A. KRAVITZ, 1997 Serotonin, social status and aggression. Curr. Opin. Neurobiol. 7: 812–819.
- Fanara, J. J., K. O. Robinson, S. M. Rollmann, R. R. Anholt and T. F. Mackay, 2002 *Vanaso* is a candidate quantitative trait gene for Drosophila olfactory behavior. Genetics **162**: 1321–1328.
- Fry, J. D., S. V. Nuzhdin, E. G. Pasyukova and T. F. Mackay, 1998 QTL mapping of genotype-environment interaction for fitness in *Drosophila melanogaster*. Genet. Res. **71**: 133–141.
- Gammie, S. C., A. P. Auger, H. M. Jessen, R. J. Vanzo, T. A. Awad et al., 2007 Altered gene expression in mice selected for high maternal aggression. Genes Brain Behav. 6: 432–443.
- GIOT, L., J. S. BADER, C. BROUWER, A. CHAUDHURI, B. KUANG et al., 2003 A protein interaction map of *Drosophila melanogaster*. Science 302: 1727–1736.
- GLEASON, J. M., S. V. NUZHDIN and M. G. RITCHIE, 2002 Quantitative trait loci affecting a courtship signal in *Drosophila melanogaster*. Heredity **89**: 1–6.
- Gurganus, M. C., J. D. Fry, S. V. Nuzhdin, E. G. Pasyukova, R. F. Lyman *et al.*, 1998 Genotype–environment interaction at quantitative trait loci affecting sensory bristle number in *Drosophila melanogaster*. Genetics **149**: 1883–1898.
- HALLER, J., G. B. MAKARA and M. R. KRUK, 1998 Catecholaminergic involvement in the control of aggression: hormones, the peripheral sympathetic, and central noradrenergic systems. Neurosci. Biobehav. Rev. 22: 85–97.
- HAN, D. H., D. B. PARK, C. NA, B. S. KEE and Y. S. LEE, 2004 Association of aggressive behavior in Korean male schizophrenic patients with polymorphisms in the serotonin transporter promoter and catecholamine-O-methyltransferase genes. Psychiatry Res. 129: 29–37.
- HARBISON, S. T., A. H. YAMAMOTO, J. J. FANARA, K. K. NORGA and T. F. MACKAY, 2004 Quantitative trait loci affecting starvation resistance in *Drosophila melanogaster*. Genetics 166: 1807–1823.
- HARBISON, S. T., M. A. CARBONE, J. F. AYROLES, E. A. STONE, R. F. LYMAN et al., 2009 Co-regulated networks that contribute to natural variation in Drosophila sleep. Nat. Genet. 41: 371–375.
- HOFFMANN, A. A., 1988 Heritable variation for territorial success in two *Drosophila melanogaster* populations. Anim. Behav. **36:** 1180–1189.
- HOFFMANN, A. A., 1989 Geographic variation in the territorial success of *Drosophila melanogaster* males. Behav. Genet. **19:** 241–255.
- HOFFMANN, A. A., and Z. CACOYIANNI, 1989 Selection for territoriality in *Drosophila melanogaster*: correlated responses in mating success and other fitness components. Anim. Behav. **38**: 23–34.
- HOYER, S. C., A. ECKART, A. HERREL, T. ZARS, S. A. FISCHER et al., 2008 Octopamine in male aggression of Drosophila. Curr. Biol. 18: 159–167.
- HUBER, R., K. SMITH, A. DELAGO, K. ISAKSSON and E. A. KRAVITZ, 1997 Serotonin and aggressive motivation in crustaceans: altering the decision to retreat. Proc. Natl. Acad. Sci. USA 94: 5939–5942.
- JORDAN, K. W., T. J. MORGAN and T. F. MACKAY, 2006 Quantitative trait loci for locomotor behavior in *Drosophila melanogaster*. Genetics 174: 271–284.

- KAIDANOV, L. Z., 1990 The rules of genetic alteration of *Drosophila melanogaster* inbred lines determined by selection. Arch. Biol. Nauka 42: 131–148.
- KARL, T., and H. HERZOG, 2007 Behavioral profiling of NPY in aggression and neuropsychiatric diseases. Peptides 28: 326–333.
- KARI, T., S. LIN, C. SCHWARZER, A. SAINSBURY, M. COUZENS et al., 2004 Yl receptors regulate aggressive behavior by modulating serotonin pathways. Proc. Natl. Acad. Sci. USA 101: 12742–12747.
- Lai, C. Q., L. D. Parnell, R. F. Lyman, J. M. Ordovas and T. F. Mackay, 2007 Candidate genes affecting Drosophila life span identified by integrating microarray gene expression analysis and QTL mapping. Mech. Ageing Dev. 128: 237–249.
- LEE, G., and J. C. HALL, 2000 A newly uncovered phenotype associated with the *fruitless* gene of *Drosophila melanogaster*: aggression-like head interactions between mutant males. Behav. Genet. 30: 263– 975
- LEIPS, J., and T. F. MACKAY, 2000 Quantitative trait loci for life span in *Drosophila melanogaster*: interactions with genetic background and larval density. Genetics 155: 1773–1788.
- Leips, J., and T. F. Mackay, 2002 The complex genetic architecture of Drosophila life span. Exp. Aging Res. 28: 361–390.
- LINDSLEY, D. L., and G. G. ZIMM, 1992 The Genome of Drosophila melanogaster. Academic Press, San Diego.
- Lyne, R., R. Smith, K. Rutherford, M. Wakeling, A. Varley *et al.*, 2007 FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biol. 8: R129.
- MANEY, D. L., 2008 Endocrine and genomic architecture of life history trade-offs in an avian model of social behavior. Gen. Comp. Endocrinol. 157: 275–282.
- MANUCK, S. B., J. D. FLORY, R. E. FERRELI, K. M. DENT, J. J. MANN et al., 1999 Aggression and anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene. Biol. Psych. 45: 603–614.
- Maynard Smith, J., and D. G. Harper, 1988 The evolution of aggression: can selection generate variability? Phil. Trans. R. Soc. Lond. B Biol. Sci. 319: 557–570.
- MICZEK, K. A., E. W. FISH and J. F. DE BOLD, 2003 Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm. Behav. 44: 242–257.
- MOEHRING, A. J., and T. F. MACKAY, 2004 The quantitative genetic basis of male mating behavior in *Drosophila melanogaster*. Genetics 167: 1249–1263.
- Montooth, K. L., J. H. Marden and A. G. Clark, 2003 Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. Genetics 165: 623–635.
- MORGAN, T. J., and T. F. MACKAY, 2006 Quantitative trait loci for thermotolerance phenotypes in *Drosophila melanogaster*. Heredity 96: 232–242.
- Nelson, R. J., and S. Chiavegatto, 2001 Molecular basis of aggression. Trends Neurosci. 24: 713–719.
- NELSON, R. J., G. E. DEMAS, P. L. HUANG, M. C. FISHMAN, V. L. DAWSON et al., 1995 Behavioral abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378: 383–386.

- NUZHDIN, S. V., E. G. PASYUKOVA, C. L. DILDA, Z. B. ZENG and T. F. MACKAY, 1997 Sex-specific quantitative trait loci affecting longevity in *Drosophila melanogaster*. Proc. Natl. Acad. Sci. USA **94**: 9734–9739.
- NUZHDIN, S. V., and S. G. REIWITCH, 2000 Are the same genes responsible for intra- and interspecific variability for sex comb tooth number in Drosophila? Heredity 84: 97–102.
- Parks, A. L., K. R. Cook, M. Belvin, N. A. Dompe, R. Fawcett *et al.*, 2004 Systematic generation of high-resolution deletion coverage of the *Drosophila melanogaster* genome. Nat. Genet. **36**: 288–999
- Pasyukova, E. G., C. Vieira and T. F. Mackay, 2000 Deficiency mapping of quantitative trait loci affecting longevity in *Drosophila melanogaster*. Genetics **156**: 1129–1146.
- Reiwitch, S. G., and S. V. Nuzhdin, 2002 Quantitative trait loci for lifespan of mated *Drosophila melanogaster* affect both sexes. Genet. Res. **80:** 225–230.
- ROBERTS, A. E., T. ARAKI, K. D. SWANSON, K. T. MONTGOMERY, T. A. SCHIRIPO *et al.*, 2007 Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. **39:** 70–74.
- RUJESCU, D., I. GIEGLING, L. MANDELLI, B. SCHNEIDER, A. M. HARTMANN et al., 2008 NOS-I and -III gene variants are differentially associated with facets of suicidal behavior and aggression-related traits. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B: 49–48
- RYDER, E., M. ASHBURNER, R. BAUTISTA-LLACER, J. DRUMMOND, J. WEBSTER *et al.*, 2007 The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177: 615–629.
- Tartaglia, M., L. A. Pennacchio, C. Zhao, K. K. Yadav, V. Fodale *et al.*, 2007 Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat. Genet. **39**: 75–79.
- VIEIRA, C., E. G. PASYUKOVA, Z. B. ZENG, J. B. HACKETT, R. F. LYMAN et al., 2000 Genotype-environment interaction for quantitative trait loci affecting life span in *Drosophila melanogaster*. Genetics **154**: 213–227.
- Vrontou, E., S. P. Nilsen, E. Demir, E. A. Kravitz and B. J. Dickson, 2006 *fruitless* regulates aggression and dominance in Drosophila. Nat. Neurosci. 9: 1469–1471.
- WAYNE, M. L., J. B. HACKETT, C. L. DILDA, S. V. NUZHDIN, E. G. PASYUKOVA *et al.*, 2001 Quantitative trait locus mapping of fitness-related traits in *Drosophila melanogaster*. Genet. Res. 77: 107–116.
- Wolf, M., G. S. Van Doorn, O. Leimar and F. J. Weissing, 2007 Life-history trade-offs favour the evolution of animal personalities. Nature **447**: 581–584.
- WOOD, D. S., M. ZEVIANI, A. PRELLE, E. BONILLA, G. SALVIATI et al., 1987 Is nebulin the defective gene product in Duchenne muscular dystrophy? N. Engl. J. Med. 316: 107–108.

Communicating editor: E. S. BUCKLER

GENETICS

Supporting Information

http://www.genetics.org/cgi/content/full/genetics.109.101691/DC1

Quantitative Trait Loci for Aggressive Behavior in Drosophila melanogaster

Alexis C. Edwards and Trudy F. C. Mackay

Copyright © 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.101691

TABLE S1

Cytogenetic breakpoints of introgression lines

Chromosome	Genotype	Line	MAS (SE)
X	1A-3E (B); 4F-20F (O)	20	24.15 (1.69)
	1B (O); 3E-9A (B); 10D-20F (O)	27	17.12 (1.64)
	1B-7E (O); 9A-11D (B), 12E-20F (O)	21	21.75 (1.45)
	1B-9A (O); 10D-16D (B); 17C-20F (O)	43 Я	21.85 (1.47)
	1B-11D (O); 12E-20F (B)	76 Я	23.7 (1.68)
2	21A-30D (B); 33E-60F (O)	78Я	19.0 (2.34)
	21A-21E (O); 22F-33E (B); 34EF-60F (O)	18	26.3 (1.67)
	21A-27B (O); 29F-38E (B); 39A-60F (O)	16	9.08 (1.82)
	21A-30D (O); 33E-50F (B); 57C-60F (O)	81 Я	23.4 (2.22)
	21E (O); 22F (B); 27B-50B (O); 50D-60F (B)	6Я	17.3 (2.04)
	21A-50F (O); 57C-60F (B)	22	22.6 (1.57)
3	61A-63A (O); 65A-100F (B)	34Я	11.55 (1.43)
	61A-67D (O); 68B-100F (B)	31 Я	13.65 (1.72)
	61A-68C (B); 69D-91D (O); 92A-96A (B); 96F-100A (O)	15	18.6 (1.50)
	61A-65A (O); 65D-69D (B); 70C-100A (O)	R88	34.05 (1.89)
	61A-67D (O); 68B-96F (B); 97D-100A (O)	5	18.4 (1.65)
	61A-68B (O); 68C-94D (B); 96A-100F (O)	22	19.2 (1.69)
	61A-69D (O); 70C-91D (B); 92A-100F (O)	16	18.95 (1.24)
	61A-89B (O); 91A-100F (B)	17	13.67 (1.71)
	61A-93B (O); 94D-100A (B)	27	14.95 (1.95)

The portion of the genome deriving from each of the parental lines, 2b (B) and Oregon-R (O), is described for each of the 20 introgression lines, along with the Mean Aggression Score (MAS) of each line.

TABLE S2

Mutant Complementation Tests

Table S2 is available as an Excel file at http://www.genetics.org/cgi/content/full/genetics.109.101691/DC1.