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ABSTRACT

Genomic selection (GS) using high-density single-nucleotide polymorphisms (SNPs) is promising to
improve response to selection in populations that are under artificial selection. High-density SNP geno-
typing of all selection candidates each generation, however, may not be cost effective. Smaller panels with
SNPs that show strong associations with phenotype can be used, but this may require separate SNPs for each
trait and each population. As an alternative, we propose to use a panel of evenly spaced low-density SNPs
across the genome to estimate genome-assisted breeding values of selection candidates in pedigreed popu-
lations. The principle of this approach is to utilize cosegregation information from low-density SNPs to track
effects of high-density SNP alleles within families. Simulations were used to analyze the loss of accuracy of
estimated breeding values from using evenly spaced and selected SNP panels compared to using all high-
density SNPs in a Bayesian analysis. Forward stepwise selection and a Bayesian approach were used to select
SNPs. Loss of accuracy was nearly independent of the number of simulated quantitative trait loci (QTL) with
evenly spaced SNPs, but increased with number of QTL for the selected SNP panels. Loss of accuracy with
evenly spaced SNPs increased steadily over generations but was constant when the smaller number indivi-
duals that are selected for breeding each generation were also genotyped using the high-density SNP panel.
With equal numbers of low-density SNPs, panels with SNPs selected on the basis of the Bayesian approach
had the smallest loss in accuracy for a single trait, but a panel with evenly spaced SNPs at 10 cM was only
slightly worse, whereas a panel with SNPs selected by forward stepwise selection was inferior. Panels with
evenly spaced SNPs can, however, be used across traits and populations and their performance is
independent of the number of QTL affecting the trait and of the methods used to estimate effects in the
training data and are, therefore, preferred for broad applications in pedigreed populations under artificial
selection.

THE goal of genomic selection (GS), as described
by Meuwissen et al. (2001), is to exploit linkage

disequilibrium between quantitative trait loci (QTL)and
high-density markers across the genome for breeding
value estimation in genetic improvement programs for
livestock. To implement GS, first, effects of high-density
single-nucleotide polymorphisms (HD-SNPs) are esti-
mated on the basis of individuals that are genotyped and
phenotyped for a quantitative trait (training). Then,
genome-assisted breeding values (GEBVs) of selection
candidates are predicted by applying the estimated
marker effects to their marker genotypes. Several simu-
lation studies (Meuwissen et al. 2001; Solberg et al. 2006;
Habier et al. 2007) have revealed the potential of GS to
improve response to selection by allowing estimation of
breeding values on selection candidates without re-
quiring phenotypic data on the individuals themselves.
One of the main challenges of GS is that the number of
markers (50,000 is common) is often much greater than

the number of phenotypes available to estimate their
effects. Methods to deal with this can be classified (Xu

2007) into variable selection methods, such as stepwise
regression (Habier et al. 2007; Piyasatian et al. 2007),
partial least squares (Moser et al. 2007; Tier et al. 2007),
principle component regression (Benjamin and Nicola

2004; Woolaston et al. 2007), and machine learning
methods (Long et al. 2007), and into shrinkage methods,
such as the Bayesian methods of Meuwissen et al. (2001)
and Xu (2003), LASSO (Xu 2007), and Bayesian variable
selection (George and McCulloch 1993), which utilize
prior information. The simulation studies of Meuwissen

et al. (2001) and Habier et al. (2007), which compared
least-squares, stepwise, and ridge regression, along with
Bayesian methods, have found that the BayesB method
of Meuwissen et al. (2001) gives the highest accuracy of
GEBVs. When implementing GS with shrinkage methods
such as BayesB, in principle all markers used for training
must also be used for prediction, and thus selection
candidates must be genotyped for all HD-SNPs. Geno-
typing selection candidates for HD-SNP panels may,
however, not be cost effective when the number of selec-
tion candidates is high or the economic benefit per
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selection candidate is low compared to the cost of
genotyping, as is the case when selection candidates have
low reproduction rates, such as cows in cattle breeding
programs, or in general for livestock species such as pigs,
poultry, fish, or sheep. Current genotyping costs per
individual are considerably lower for low-density SNP
(LD-SNP) panels than for HD-SNP panels. Thus, there is
much interest in developing methods to implement GS
using LD-SNP panels. The most common strategy that
has been proposed to develop LD-SNP panels is to em-
ploy variable selection methods to identify a small set of
markers that are predictive of trait phenotype or breed-
ing value. A potential problem with variable selection
for development of an LD-SNP panel, however, is that
selected HD-SNPs might be different for each quantita-
tive trait and population, thereby increasing the number
of SNPs that must be genotyped when GS is implemented
for the multiple-trait breeding programs in livestock. In
addition, the effectiveness of this approach may depend
on the number of QTL that affect the trait; larger
numbers of SNPs will be needed for traits with larger
numbers of QTL. To overcome these limitations, we
propose to use evenly spaced LD-SNPs on the entire
genome to obtain GEBVs of selection candidates. In this
approach, training individuals are genotyped for HD-
SNPs, whereas their descendants, including selection
candidates, are genotyped for evenly spaced LD-SNPs. By
utilizing cosegregation of HD-SNPs with LD-SNPs within
a family, HD-SNP alleles are tracked from training in-
dividuals to selection candidates by estimating probabil-
ities of descent of HD-SNP alleles from the training
individuals to their descendants on the basis of LD-SNP
genotypes of the descendants and HD-SNP haplotypes of
their ancestors in the training data. These probabilities
are then used to predict GEBVs on the selection candi-
dates without having to genotype them for HD-SNPs. A
similar approach was proposed for genomic selection by
Hayes and Goddard (2008) and Goddard (2008), for
association mapping in plants by Yuet al. (2008), and for
inferring HD genotypes in a human pedigree by Burdick

et al. (2006). Note that the use of cosegregation within
families to impute missing SNP genotypes, as proposed
here, is different from the strategy that is employed in
human genetics, in which TAG SNPs are used to identify
haplotype blocks that segregate across the population
( Johnson et al. 2001; Patil et al. 2001; Marchini et al.
2007; Servin and Stephens 2007). In contrast to these
studies, the proposed strategy identifies haplotype blocks
on a within-family basis. Although this does require avail-
ability of pedigree information, an advantage is that hap-
lotype blocks are much greater within families than across
the population and, therefore, require much lower
marker densities to trace alleles at markers that are not
genotyped.

The objective of this article was to evaluate the loss of
accuracy for GEBVs that are predicted by using LD-SNPs
based on the sparse marker approach and to evaluate

the impact of the number of QTL that affect the trait.
Accuracy of an LD-SNP panel based on selected HD-
SNPs was included for comparison. Simulated data were
used to estimate accuracies of GEBVs for the various GS
methods.

THEORY

The evenly spaced LD-SNP approach (ELD-GS) pro-
posed here can be outlined as follows: (1) Estimate the
effects of HD-SNP alleles in an ancestral training
population using a method such as BayesB, (2) estimate
HD-SNP haplotypes of training individuals, (3) estimate
probabilities of descent of marker alleles (PDMs) to trace
HD-SNP alleles from ancestors to selection candidates
by using LD-SNP genotypes and pedigree information,
and (4) predict GEBVs on selection candidates. Meth-
ods for each of these steps are described in the following.

Estimation of the effects of HD-SNP alleles: The
statistical model to estimate effects of HD-SNP alleles
using the training population can be written as

y ¼ 1m 1
XK

k¼1

xkbkdk 1 e; ð1Þ

where y is the vector of trait phenotypes, m is the overall
mean, xk is the column vector of HD-SNP genotypes, bk

is the effect and dk a 0/1-indicator variable, all for HD-
SNP k, and e is the vector of random residual effects with
mean zero and variance s2

e. The HD-SNP genotype of
an individual in xk is coded as the number of copies of
one HD-SNP allele it carries, i.e., 0, 1, or 2. In BayesB
(Meuwissen et al. 2001), bk is treated as random with
prior N ð0; s2

bk
Þ. The prior distribution for dk, indicating

whether HD-SNP k is included in the model (i.e., dk¼ 1)
or not, is the probability that HD-SNP k has a nonzero
effect, which is predefined here to be 0.05. If dk¼ 1, then
the prior distribution for s2

bk
was a scaled inverse chi

square with n ¼ 4.2 d.f. and scale S ¼ 0.0429, as used by
Meuwissen et al. (2001). For the error variance, s2

e, the
prior distribution was also a scaled inverse chi square
with n¼ 4.2 and S¼ 0.52 having expected value of 1 and
finite variance. Markov chain Monte Carlo (MCMC)
sampling was used to infer model parameters, where m,
bk, and s2

e were sampled with a Gibbs step and dk and s2
bk

with a Metropolis–Hastings step. The MCMC sampler
was run for 10,000 iterations with a burn-in of 1000
iterations.

Estimation of HD-SNP haplotypes: Alleles at the HD-
SNPs are traced from training individuals to later
generations using LD-SNPs, as is described in the next
section. To do this, HD-SNP haplotypes of training in-
dividuals have to be derived first. In this study, it was
assumed that HD-SNP haplotypes of training individuals
are known. In practice, HD-SNP haplotypes of training
individuals can be estimated if parents of the training
individuals are also genotyped for HD-SNPs, noting that
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the offspring of training individuals will be genotyped
only for LD-SNPs.

Estimation of PDMs to trace HD-SNP alleles: Geno-
types at LD-SNPs of training individuals and their des-
cendants, including selection candidates, are used to
estimate the probability of descent for each HD-SNP
allele of nonfounders (PDM). Two PDMs are estimated
for each allele at each HD-SNP of a LD-genotyped des-
cendant, which indicate the probabilities that the HD-
SNP allele originates from the parent’s maternal (grand-
maternal origin) or paternal (grandpaternal origin)
allele. The PDMs of descendant i at HD-SNP k are
denoted by pmm

ik
and p

mp
ik for the maternal allele and by

p
pm
ik and p

pp
ik for the paternal allele. To estimate these

PDMs, first, ordered genotypes and segregation indica-
tors of alleles at the LD-SNPs of the LD-genotyped
descendants are sampled with an overlapping blocking
Gibbs algorithm. The order of an LD-SNP genotype
specifies which allele was transmitted from the mother
and which one from the father. The segregation in-
dicator of a given allele is 0 if it is of grandmaternal origin
and 1 if it is of grandpaternal origin. In this approach,
training individuals are treated as founders and their
descendants as nonfounders. The LD-SNP haplotypes of
training individuals and thus the order of their LD-SNP
genotypes are assumed known (see previous section).
The blocking in this Gibbs algorithm is by individuals to
reduce cutset sizes during peeling (Elston and Stew-

art 1971) and reverse peeling (Heath 1997), which
both are performed within blocks. Each block contains a
sire, its mates, their offspring, and the parents of the sire
and the mates. The blocks are overlapping, because sires
and dams also occur as offspring in other blocks, a
strategy also described by Thomas et al. (2000) and
Abraham et al. (2007). The Gibbs sampler was run for
1000 iterations with a burn-in of 100 iterations. Realiza-
tions of the Gibbs sampler are used to estimate the joint
probability distribution of segregation indicators on the
maternal (m) and paternal (p) haplotypes of a non-
founder for every adjacent LD-SNP pair. These proba-
bilities are denoted by PrðOm

il
; Om

ir
Þ and PrðOp

il
; O

p
ir
Þ,

where Oil and Oir are segregation indicators, respectively,
for the left and the right LD-SNP of an adjacent pair for

individual i. For example, PrðOm
il
; Om

ir
Þ indicates the

probability of the grandparental origin for the 2-SNP
haplotype received from the mother at an adjacent LD-
SNP pair, and in particular whether the alleles on those
2-SNP haplotypes were transmitted without recombina-
tion between the two adjacent LD-SNPs. Note that
through peeling, information from all LD-SNPs and
from the whole pedigree is used to sample the segrega-
tion indicators of an adjacent LD-SNP pair. With the
segregation indicator for a given LD-SNP allele being
either 0 or 1, there are four possible combinations of
segregation indicators for a pair of LD-SNPs on a
haplotype. Given one of these combinations, the condi-
tional PDM can be calculated for the maternal and the
paternal allele of a descendant at every HD-SNP in the
interval of the flanking LD-SNPs using formulas shown
in Table 1, where recombination frequencies are ob-
tained by Haldane’s map function. The PDMs used to
trace HD-SNP alleles are finally derived by weighting the
conditional PDM for each combination of segregation
indicators for the flanking LD-SNPs with their corre-
sponding probabilities, i.e., PrðOm

il
; Om

ir
Þ and PrðOp

il
; O

p
ir
Þ.

Prediction of GEBVs: The PDMs are used to estimate
effects of the maternal and paternal HD-SNP alleles of
LD-genotyped selection candidates by using them to
weight estimates of effects of alleles at HD-SNPs of the
individual’s mother and father. For example, the effect
of the maternal allele of individual i at HD-SNP k, g m

ik
, is

estimated by

ĝ m
ik
¼ pmm

ik
ĝm

dk
1 p

mp
ik ĝ

p
dk
; ð2Þ

where pmm
ik

(p
mp
ik ) is the PDM for the maternal allele of i,

i.e., the probability that the allele, which i received from
its mother d, is the mother’s maternal (paternal) allele;
and ĝm

dk
and ĝ

p
dk

are respectively the estimated effects of
the maternal and the paternal allele of d at HD-SNP k.
The effect of the paternal allele of i is estimated cor-
respondingly. With multiple generations of LD genotyp-
ing, this equation is applied recursively, starting with
individuals with known HD-SNP haplotypes such as the
training individuals, for which allele effect estimates can
be obtained as

TABLE 1

Conditional probabilities of descent, Pr(Sm
ik

*Sm
dk
jOm

il
;Om

ir
) and Pr(Sm

ik
*S

p
dk
jOm

il
;Om

ir
), of the maternal allele (Sm

ik
)

of individual i from the maternal (Sm
dk

) and paternal (S
p
dk

) allele of its mother d at HD-SNP k, depending on
segregation indicators at the left (Om

il
) and the right (Om

ir
) LD-SNP of an adjacent pair on the maternal haplotype

of individual i

Om
il

Om
ir

PrðSm
ik

*Sm
dk
jOm

il
;Om

ir
Þ PrðSm

ik
*S

p
dk
jOm

il
;Om

ir
Þ

0 0 (1 – ulk)(1 – ukr)/(1 – ulr) ulkukr/(1 – ulr)
0 1 (1 – ulk)ukr/ulr ulk(1 – ukr)/ulr

1 0 ulk(1 – ukr)/ulr (1 – ulk)ukr/ulr

1 1 ulkukr/(1 – ulr) (1 – ulk)(1 – ukr)/(1 – ulr)

ulk (ukr), recombination frequency between HD-SNP k and the left (right) LD-SNP; ulr, recombination fre-
quency between left and right LD-SNPs; Om

il
¼ 0 (1) means grandmaternal (grandpaternal) origin.
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ĝ m
ik
¼ xm

ik
b̂k and ĝ

p
ik ¼ x

p
ik b̂k ; ð3Þ

where xm
ik

and x
p
ik denote the maternal and the paternal

allele, respectively, and b̂k is the effect at HD-SNP k
estimated by BayesB using the training data. Finally, the
GEBV of i is predicted with

GEBVi ¼
XK

k¼1

ĝ m
ik

1 ĝ
p
ik ; ð4Þ

where the summation is over all K HD-SNPs.

SIMULATION

To evaluate the effectiveness of the proposed ELD-GS
approach, simulation was used to evaluate the loss in
accuracy compared to HD-GS and also to compare it to
use of LD-SNP panels derived by marker selection ap-
proaches. Simulations started with a base population of
500 individuals that were randomly mated, including
selfing (thus effective population size was 500), for 1000
discrete generations and then reduced to a size of 100
individuals (Figure 1, generation �1062). Thereafter,
random mating was used for another 50 generations.
The larger population size for the first 1000 generations
takes into account that historical effective population
sizes for livestock populations are assumed to be larger
than they are today (Hayes et al. 2003). The population
was increased over the next 10 generations to obtain a
population of 500 males and 500 females in generation
�2. The following 3 generations (�1, 0, and 1) were
obtained by randomly mating 50 sires to 500 dams in
each discrete generation. Each female had 1 male and
1 female offspring and thus each sire had 10 sons and
10 daughters. The 1000 individuals in generation 1 were
phenotyped for the quantitative trait and genotyped at
1000 HD-SNPs to use them for training. The last 3 gene-
rations (2,3, and 4) were obtained bymating 10 males with
100 females to produce 200 offspring per generation.
This reduction in population size was done to reduce
computing time for sampling LD-SNP genotypes and
segregation indicators with the Gibbs sampler. For the
comparison of the alternative GS methods, individuals
in generations 2, 3, and 4 were assumed to be genotyped
(i) for the HD-SNP panel consisting of the 1000 HD-
SNPs used for training, (ii) for evenly spaced LD-SNP
panels, and (iii) for LD-SNP panels, based on subsets of
selected HD-SNPs, as is explained in more detail below.

The genome was simulated with 10 chromosomes of
1 M, each having 2000 evenly spaced SNPs in generation
�1062. Thus, the initial SNP spacing was 0.05 cM. A total
of 100, 500, or 1000 QTL were randomly distributed
among SNPs. In generation �1062, all loci were simu-
lated to be biallelic with allele frequencies 0.5 and in
Hardy–Weinberg and linkage equilibrium. Effects at the
QTL were sampled from a gamma distribution with shape
0.4 and scale 1.66 as used by Meuwissen et al. (2001). A

mutation rate of 2.5 3 10�5 was used for both SNPs and
QTL and recombinations were modeled according to a
binomial map function, where the maximum number of
uniformly and independently distributed crossovers on
a chromosome of 1 M was four (Karlin 1984), i.e., as-
suming interference. Initial allele frequencies differ
from similar simulations conducted by, e.g., Meuwissen

et al. (2001), who started with a population that was fixed
for all loci, and mutation rate was larger than in practice.
Starting with a segregating population and using this
high mutation rate, however, allowed us to approach,
but not reach, mutation–drift equilibrium with a sta-
tionary U-shaped distribution of allele frequencies after
1000 compared to .100,000 generations of random
mating. Moreover, this high mutation rate ensured that
enough loci are segregating for statistical analyses after
1000 generations. It can be shown by simulation that the
simulated disequilibrium for an effective population
size of 500 individuals after 1000 generations of random
mating corresponds well to the expected disequilibrium
in mutation–drift equilibrium calculated with the formula
given by Ohta and Kimura (1969). With this formula it
can also be shown that, even at small distances between
loci, mutation rate has only a small effect on disequilib-
rium in mutation–drift equilibrium for an effective
population size of 500. To develop the HD-SNP panel
for genotyping, using the SNPs still segregating in gener-
ation 0, each chromosome was first divided into 100 bins
with an equal number of SNPs in each bin. Then, within
each bin the SNP with frequency closest to 0.5 was se-
lected, giving a total of 1000 segregating HD-SNPs for
analyses. The evenly spaced LD-SNPs were chosen from
HD-SNPs by taking the first HD-SNP on each chromo-
some and then SNPs that were at least 10 cM apart and had
a minor allele frequency .0.2 in generation 0. In another
scenario, LD-SNPs were chosen to be 20 cM apart.

Heritability of the quantitative trait was set to 0.5 by
rescaling effects of QTL that were still segregating
(minor allele frequency, MAF .0) in generation 0.
Phenotypes were calculated as the sum of genotypic

Figure 1.—Simulated population.
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effects of an individual plus a residual effect sampled
from a standard normal distribution.

Genomic selection aims to exploit linkage disequilib-
rium between QTL and HD-SNPs and thus the accuracy
of GEBVs that was used to compare alternative GS
methods depends on the amount of linkage disequilib-
rium, which was measured here by r2 for each pair of
QTL and HD-SNP. Because MAF can skew r2, only QTL
and HD-SNPs with minor allele frequencies .0.05 were
used to analyze linkage disequilibrium. Average r2 was
estimated for bins of length 0.5 cM and compared with
expected r2 calculated with E(r2) ¼ 1/(1 1 4 3 Ne 3 u)
(Sved 1969), where Ne is the effective population size
and u is the recombination frequency.

The loss in accuracy of GEBVs for ELD-GS compared
to the accuracy obtained by HD-GS depends on the
precision of estimated PDMs, which was analyzed by
estimating the mean absolute difference between true
segregation indicators of HD-SNPs alleles and PDMs.
The more this measure is ,0.5, the more information
LD-SNPs provided to estimate PDMs.

In practice, offspring of selection candidates are not
available when the first selection decisions based on
GEBVs are made and thus they cannot provide in-
formation to estimate PDMs of their parents. Therefore,
PDMs of individuals in generations 2 and 3 were
estimated without genotype information of their simu-
lated descendants.

In the following, the proposed ELD-GS approach is
referred to as ELD-10 and ELD-20 for LD-SNP spacings
of 10 and 20 cM. In addition, ELD-101 and ELD-201

were analyzed in which parents of selection candidates
were assumed to be also HD genotyped, after they were
selected using LD-GS. Having HD genotypes on parents
of selection candidates can improve the accuracy of
GEBVs for two reasons. First, HD-SNP haplotypes of the
parents can be derived so that genetic effects of HD-SNP
alleles can be estimated with Equation 3, thereby re-
moving the uncertainty about the state of the HD-SNP
allele of parents resulting from previous generations. In
this study, HD-SNP haplotypes of the parents were not
estimated, but assumed known. Second, the order of
LD-SNP genotypes of the parents can be derived, which
aids estimation of PDMs.

The ELD-GS approaches were also compared with
results from two methods to select a subset of LD-SNPs
from HD-SNPs based on the training data: BayesB (BB)
and forward stepwise least-squares regression (FSS). In
the BB approach, the 110 or 40 HD-SNPs that were fitted
most frequently in the MCMC algorithm of BayesB in the
training data were used for LD-SNP genotyping in what
is denoted by SLD-BB-110 or SLD-BB-40. The number
110 corresponds to the number of markers used in the
ELD-GS approach with 10-cM marker distance. Selec-
tion of 40 SNPs reflects that most selection programs
consider multiple traits, requiring a smaller number of
selected markers per trait to end up with a final LD panel

comparable to what we propose for the ELD-GS approach.
In LD-GS approaches that are referred to as SLD-FSS, FSS
was implemented as described by Habier et al. (2007), in
which two-sided t-statistics are calculated to decide
whether to include an HD-SNP in the LD-SNP panel or
to remove it. The algorithm starts without HD-SNP in the
LD-SNP panel and includes one if the P-value is lower
than the significance level and removes one if the P-value
is greater. In the method referred to as SLD-FSS-0.01, the
significance level was set to 0.01. In strategy SLD-FSS-110,
exactly 110 SNPs were selected by FSS, comparable to
the number of SNPs used for ELD-GS and SLD-BB-110.
For the SLD-GS approaches, GEBVs were predicted by

GEBVi ¼
XK

k¼1

xik b̂k ; ð5Þ

where xik is the genotype of individual i and b̂k is the
effect at HD-SNP k estimated either by BayesB or by FSS.
If a marker is not selected for the LD-SNP panel, then
b̂k ¼ 0.

RESULTS

The numbers of segregating (MAF . 0.01) QTL after
1060 generations for 100, 500, and 1000 QTL initially
simulated were 49 (62), 220 (64), and 501 (65). The
MAF of segregating QTL tended to be uniformly dis-
tributed with mean 0.24 (60.01). Average map distance
between adjacent HD-SNPs was 1 cM and average MAF of
HD-SNPs was 0.41 (60.01). In scenarios with an LD-SNP
spacing of 10 cM, 110 SNPs with an average MAF of 0.42
(60.03) were selected, with 11 SNPs per 1-M chromo-
some. In the scenario with a LD-SNP spacing of 20 cM, 60
SNPs were selected, 6 SNPs per chromosome. The
extent of linkage disequilibrium between pairs of QTL
and HD-SNPs generated after 1063 generations is
depicted in Figure 2. Average r2 was substantial at short
distances but decreased exponentially with increasing
distance between loci. Average r2’s were 0.38, 0.20, 0.14,
and 0.04 at distances of 0.25, 0.75, 1.25 and 5 cM.
Average LD at distances ,2 cM was lower than expected
on the basis of Ne¼ 100, because historical Ne was .100.
Appreciable disequilibrium did not exist between loci
separated by .10 cM or between nonsyntenic loci.

Accuracies of GEBVs in generations 1–4 obtained by
the high-density BayesB (HD-BB) and ELD strategies are
shown in Figure 3 for the scenario with 500 simulated
QTL. The accuracy in generation 1 was identical for all
five methods, because generation 1 was the training
generation and GEBVs of training individuals were
predicted with Equation 5, using HD-SNPs. In gener-
ations after training, the accuracy of HD-BB decreased at
a decreasing rate from 0.64 (60.010) to 0.55 (60.014)
but was always greater than that of any ELD strategy, as
expected. The absolute loss of accuracy for the ELD
strategies compared to the accuracy of HD-BB was
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considerably higher for an LD-SNP spacing of 20 cM
than for 10 cM, which goes along with a much higher
mean absolute difference (MAD) of PDMs for 20 cM
than for 10 cM, as shown in Table 2. The absolute loss in
accuracy was 0.03 for ELD-10 and 0.08 for ELD-20 in
generation 2, and then increased steadily to 0.07 and
0.15 for ELD-10 and ELD-20 in generation 4. Because
HD-SNP haplotypes were assumed known for training
individuals, the accuracy of ELD-10 was identical to that
of ELD-101 in generation 2, as it was for ELD-20 and
ELD-201. In the following generations, the absolute
loss in accuracy remained relatively constant for
ELD-101 and ELD-201, in contrast to the ELD-10
and -20 strategies. The MAD of PDMs for ELD-101 and
ELD-201 (not shown here) remained constant after
generation 2.

Table 3 shows the loss of accuracy for ELD-10 and
ELD-101 as a percentage of the accuracy of HD-BB for

different numbers of simulated QTL. For ELD-10 for
500 simulated QTL, the proportional loss of accuracy
increased from 4.4% in generation 2 to 13.9% in gene-
ration 4, whereas the loss for ELD-101 did not increase
significantly over generations. Doubling the number of
simulated QTL to 1000 had limited impact on the ac-
curacy of HD-GS or on the proportional losses for ELD-10
and ELD-101. Reducing the number of simulated QTL
to 100 increased accuracies for all methods and reduced
the decline in accuracies over generations (Table 3). But
the proportional losses in accuracy for ELD-10 and ELD-
101 were similar to those observed for 500 QTL. The
observed robustness of proportional losses in accuracy
for the ELD approaches is consistent with the consis-
tency of the MAD of PDMs across numbers of QTL
simulated that is shown in Table 2.

Table 4 shows the proportional loss in accuracy for
the LD-GS strategies with selected HD-SNPs on the LD
panel, compared to HD-GS. Selecting 110 SNPs using
BayesB (strategy SLD-BB-110) had the lowest loss, in
all cases, and was also slightly better than the ELD
strategies. Proportional losses for SLD-BB-110 ranged
from 0.7 to 3.0% and decreased over generations but
increased with the number of QTL. The increase in the
loss of accuracy with number of QTL occurred for all
SLD strategies, except for SLD-FSS-110, for which pro-
portional losses were greatest for 100 QTL and smallest
for 500 QTL. Strategy SLD-BB-40 was superior to ELD-
10, ELD-101, and the two SLD-FSS methods with 100
QTL, but inferior to ELD-101 with 1000 QTL. With 500
QTL, SLD-BB-40 had greater proportional losses than
ELD-10 and ELD-101 in generation 2, but similar losses
to ELD-101 afterwards. The loss of SLD-FSS-0.01 also
increased with number of QTL, especially from 500
to 1000 QTL, but trends over generations differed
by number of QTL: With 100 simulated QTL, the loss
was constant over generations, but the loss clearly
increased with 1000 simulated QTL and also from
generation 3 to 4 with 500 QTL. Strategy SLD-FSS-110
was inferior to all other methods and its loss always
increased over generations.

Figure 2.—Linkage disequilibrium between QTL and HD-
SNPs measured by r2 against distance in centimorgans (cM)
obtained from one replicate in which 500 QTL were simu-
lated. The solid line is the average r2 estimated for bins of
length 0.5 cM. The dashed line is the predicted r2 based on
the equation E(r2) ¼ 1/(1 1 4 3 100 3 u), where 100 is
the effective population size and u is the recombination fre-
quency.

Figure 3.—Accuracies of GEBVs for 500 simu-
lated QTL obtained by genomic selection using
high-density genotyping (HD-BB) and low-den-
sity genotypic strategies using evenly spaced SNPs
at 10- (ELD-10, ELD-101) or 20-cM intervals
(ELD-20 and ELD-201). Strategies denoted by
1 indicate that parents were also high-density
genotyped. Genomic selection training was based
on 1000 individuals each having 1000 HD-SNP
genotypes. Results are based on 25 replicates.
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DISCUSSION

The first objective of this study was to evaluate the loss
of accuracy of GEBVs obtained by the ELD-GS ap-
proach. Losses were small in the first generation of
LD-SNP genotyping (,5% at an LD-SNP density of 10
cM) but increased over generations. Genotyping indi-
viduals that were used for breeding in each generation
also for the HD-SNP panel removed the increase in the
loss of accuracy over generations. When the LD-SNP
spacing was increased from 10 to 20 cM, the loss in
accuracy nearly doubled regardless of whether parents
were genotyped at HD-SNPs or not. The loss of accuracy
with the ELD strategies was nearly independent of the
number of QTL simulated. In the following, the main
factors affecting accuracy and the loss of accuracy with
ELD-GS are discussed.

Estimation of the effects of HD-SNP alleles: The
magnitude of accuracies of GEBVs with any GS strategy,
including ELD-GS, depends to a large extent on the

method used to estimate HD-SNP effects. In this study
BayesB was used, because it gave the highest accuracy of
GEBVs in comparison to alternative methods (Meuwissen

et al. 2001; Habier et al. 2007), and Calus et al. (2008)
showed that when SNP density is high, a Bayesian
approach similar to BayesB was as good as the HAP-
IBD method of Meuwissen and Goddard (2001) that
utilizes information from both linkage disequilibrium
and cosegregation. The accuracy of GEBVs obtained by
BayesB in this study for 100 simulated QTL can be
compared with accuracies found in Meuwissen et al.
(2001), Solberg et al. (2006), and Habier et al. (2007),
because the number of 50 segregating QTL was similar in
all these studies. The decline in accuracies in gener-
ations following training was, however, lower in this
study, because QTL positions were simulated differently.
Here, QTL were randomly distributed across the ge-
nome, whereas they were located at the center of
adjacent HD-SNP intervals in the other studies. Thus,
on average higher disequilibrium is expected here
between markers and QTL, because they can be located
closer together.

Accuracies of all GS methods depend on linkage
disequilibrium and the SNP density used for training.
The average amount of disequilibrium at a given
distance was higher in this study than in recent reports
that measured disequilibrium with r2 in cattle (McKay

et al. 2007; de Roos et al. 2008; Sargolzaei et al. 2008)
and chicken (Andreescu et al. 2007). For example, de

Roos et al. (2008) found average r2 values of 0.35, 0.22,
0.14, and 0.06 at distances 0.01, 0.04, 0.1, and 1 cM,
whereas similar r2 values were obtained here at 0.25,
0.75, 1.25, and 3.25 cM. Although the simulated dis-
equilibrium was higher than in recent reports, results
and conclusions are transferable into practice, because
the average distance between HD-SNPs was only 1 cM in

TABLE 3

Accuracy of GEBVs with high-density (HD) genotyping and loss of accuracy using approaches based on
genotyping evenly spaced low-density (ELD) SNPs, as a percentage of the accuracy of HD-BayesB

(HD-BB) in generations after training and for a trait with 100, 500, and 1000 simulated QTL

No. of simulated
QTL

Generation

Method 2 3 4

HD-BB 70.9 (61.64) 69.0 (61.55) 65.1 (61.96)
100 ELD-10 4.4 (63.16) 9.5 (63.50) 15.8 (64.60)

ELD-101 4.4 (63.16) 5.0 (63.08) 4.5 (63.63)
HD-BB 64.4 (61.03) 58.2 (61.41) 55.3 (61.37)

500 ELD-10 4.4 (63.29) 8.6 (64.82) 13.9 (65.43)
ELD-101 4.4 (63.29) 5.7 (63.89) 5.2 (63.71)
HD-BB 63.2 (61.20) 57.1 (61.69) 56.1 (61.79)

1000 ELD-10 4.6 (62.98) 8.6 (63.81) 14.2 (64.90)
ELD-101 4.6 (62.98) 4.5 (63.12) 6.0 (63.86)

One thousand individuals each having 1000 HD-SNPs were used to estimate HD-SNP effects with BayesB and
LD-SNPs at intervals of 10 cM were used to trace HD-SNP alleles (6SE, based on 25 replicates). ELD-101 in-
dicates that individuals used for breeding in each generation were also genotyped for HD-SNPs.

TABLE 2

Mean absolute difference between true segregation indicators
and probabilities of descent of high-density SNP alleles for

equally spaced low-density (LD) SNPs, depending on the
spacing of LD-SNPs, the generation after training, and

the number of simulated QTL (25 replicates)

No. of simulated
QTL

LD-SNP spacing
(cM)

Generation

2 3 4

100 10 0.146 0.151 0.153
500 10 0.146 0.152 0.157
1000 10 0.145 0.152 0.156
500 20 0.249 0.265 0.272

SE , 0.002.
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this study, whereas panels with average distances of
,0.05 cM are available in practice. Thus, the amount
of usable disequilibrium in our simulated data should be
comparable to that available in practice. The number
of HD-SNP effects estimated in this study was smaller
than that in practice (1000 vs. 50,000 HD-SNPs). This,
however, should not affect conclusions about the HD-GS
and ELD-GS approaches, because Fernando et al.
(2008) showed that BayesB results in high accuracies
of GEBVs with 60,000 HD-SNPs.

Accuracies of BayesB decreased rapidly in the first two
generations after training (Figure 3), which is mainly
attributed to the decay of additive-genetic relationships
captured by HD-SNPs (Habier et al. 2007). The accuracy
was greatest and the decay over generations was lowest
for 100 simulated QTL, indicating that more genetic
variation is captured by disequilibrium than for a greater
number of QTL. Another reason for the decline of
accuracy in early generations after training is the decay
of disequilibrium between QTL and HD-SNPs due to
recombinations. Information from both disequilibrium
and cosegregation can be used for training to avoid the
rapid decline of accuracy after training.

Estimation of HD-SNP haplotypes: HD-SNP haplo-
types of training individuals, which were assumed known
here, must be inferred in practice from the HD-SNP
genotypes of their parents. With HD-SNPs, this should
be possible with high accuracy even if a training in-
dividual has no other close relatives in the training data.
In addition, paternal half-sib families may be used for
training, which not only allows HD-SNP haplotypes to be
estimated more accurately, but also reduces the number
of sires that must be genotyped.

Estimation of PDMs to trace HD-SNP alleles: The
loss of accuracy of ELD-GS is due to the incomplete

prediction of grandparental origins of HD-SNP alleles
using PDMs. The precision of PDMs depends on how
accurate haplotypes of adjacent LD-SNP pairs can be
traced using joint probabilities of segregation indicators
and on how accurate the grandparental origin of a HD-
SNP allele can be predicted conditional on the segrega-
tion indicators of flanking LD-SNPs. The accuracy to
trace LD-SNP haplotypes is determined by the allele
frequencies of LD-SNPs, the spacing between them, and
the family structure. Intermediate allele frequencies are
most informative for the prediction of segregation
indicators at a single locus. This could be improved by
using more informative microsatellites instead of SNPs,
but high genotyping costs would not justify that.
Furthermore, with a smaller LD-SNP spacing, flanking
LD-SNPs provide more information to infer segregation
indicators at a certain locus, which is important if the
genotypes of parents and offspring are not informative
at that locus. In addition, LD-SNP haplotypes can be
inferred and traced better if family sizes are larger.
The accuracy to predict the grandparental origin of a
HD-SNP allele conditional on the segregation indicators
is determined by the spacing of LD-SNPs and the
occurrence of recombinations in the interval of flanking
LD-SNPs. The larger the spacing of LD-SNPs is, the lower
the precision of PDMs, because recombinations are
more likely to occur between adjacent LD-SNPs. Pre-
cision of PDMs decreases even if no recombination is
observed between adjacent LD-SNPs, because the possi-
bility of a recombination is taken into account. If
recombination did occur between adjacent LD-SNPs,
the precision of PDMs is reduced more. With an odd
number of crossovers, uncertainty about the grandpa-
rental origin of an allele increases more for HD-SNPs
that are located near the center of the flanking LD-SNPs.

TABLE 4

Loss of accuracy of GEBVs with genotyping of selected low-density (SLD) SNPs as a percentage of the accuracy
obtained by high-density BayesB in generations after training and with 100, 500, and 1000 simulated QTL

No. of simulated
QTL

Generation

Method 2 3 4

SLD-BB-110 1.1 (63.2) 0.8 (63.2) 0.7 (64.2)
100 SLD-BB-40 3.1 (63.1) 2.0 (63.2) 1.7 (64.2)

SLD-FSS-0.01 9.0 (62.4) 8.1 (63.3) 8.7 (64.0)
SLD-FSS-110 18.2 (63.2) 23.1 (63.2) 24.9 (64.2)
SLD-BB-110 2.5 (63.2) 1.9 (64.8) 1.5 (65.4)

500 SLD-BB-40 7.8 (63.2) 6.5 (64.8) 4.02 (65.0)
SLD-FSS-0.01 10.7 (62.7) 10.6 (64.0) 12.1 (64.1)
SLD-FSS-110 12.5 (62.8) 14.2 (62.8) 18.8 (64.3)
SLD-BB-110 3.0 (63.3) 2.6 (63.8) 2.3 (64.9)

1000 SLD-BB-40 9.2 (63.3) 9.7 (63.7) 8.4 (64.9)
SLD-FSS-0.01 12.8 (63.2) 17.7 (64.1) 21.0 (64.6)
SLD-FSS-110 13.7 (63.5) 18.4 (63.8) 22.0 (64.2)

One thousand individuals were used to estimate HD-SNP effects (6SE, based on 25 replicates). SLD-BB-110 and
SLD-BB-40 refer to selection of 110 and 40 SNPs using BayesB; SLD-FSS-0.01 and SLD-FSS-110 refer to selection of
SNPs by forward stepwise selection with a significance level of 0.01 or with a total of 110 SNPs selected.
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With an even number of crossovers in the LD-SNP
interval, PDMs can predict the wrong grandparental
origin for some HD-SNPs in the interval. This worst-case
scenario occurs if the alleles at adjacent LD-SNPs have
identical grandparental origin, but the flanked HD-SNP
allele has opposite origin. Recombination in the LD-SNP
interval is expected to have a greater impact on accuracy
of the GEBV when the flanked HD-SNP allele has large
effect. This happens if the linked QTL has a large effect
and its disequilibrium with the HD-SNP is high.

As expected, precision of PDMs, measured as the
mean absolute difference of true segregation indicators
and PDMs (Table 2), was independent of the number
of simulated QTL and higher with a smaller LD-SNP
spacing. The latter can be observed by comparing ELD-
101 and ELD-201 in Table 2. Without HD genotyping
of the parents of selection candidates, precision of PDMs
declined over generations. The reason is that estimation
of segregation indicators at SNPs in selection candidates
depends on information about the order of LD-SNP
genotypes of the parents of selection candidates. In
generation 2, the order of LD-SNP genotypes of parents
(training individuals in generation 1) was assumed known,
but in later generations this order had to be inferred
from observed, unordered LD-SNP genotypes. Informa-
tion about the order of LD-SNPs genotypes of training
individuals reduces to an asymptote over generations such
that precision of segregation indicators will decrease less
in later generations and finally the precision is expected to
remain constant. For strategies ELD-101 and ELD-201

the order of LD-SNPs of parents is known, because they
are HD genotyped and the precision of PDMs remains
constant over generations (results not shown). The effect
of a decreasing precision of PDMs over generations on loss
of accuracy cannot be determined here, because the
increasing loss for ELD-10 and ELD-20 is also due to the
uncertainty of PDMs in previous generations.

Precision of PDMs does not depend on the number of
HD-SNPs if LD-SNPs are not a subset of HD-SNPs. As is
realistic, LD-SNPs were part of the HD-SNPs in this study,
and thus when HD-SNP density is higher than simulated
here, the mean absolute difference of PDMs is expected
to be slightly lower than found here. The reason is that
LD-SNPs have PDMs with higher precision than HD-
SNPs that are not LD-SNPs. Therefore, as the density of
the HD-SNPs increases, the fraction of LD-SNPs de-
creases and, thus, precision will be somewhat lower than
shown in Table 2. For example, when the number of HD-
SNPs was increased from 1000 to 4000, the range of the
mean absolute difference increased from 0.146–0.159
to 0.158–0.169. The loss of accuracy with ELD also
increased by 1–2%. By increasing the number of HD-
SNPs from 1000 to 4000, the fraction of LD-SNPs among
HD-SNPs decreased from 11 to 2.75%. Thus with a
higher density of HD-SNPs, precision of PDMs is not
expected to decrease such that loss of accuracy would
increase significantly. This increased loss with 4000 HD-

SNPs, however, might not be caused by lower precision
of PDMs; recombination between adjacent LD-SNPs
might also have a greater impact on loss of accuracy
than with a lower density of HD-SNPs. The explanation is
that with higher marker density, disequilibrium between
QTL and HD-SNPs is expected to be greater, such that
there are fewer HD-SNPs explaining more genetic
variation than with lower density of HD-SNPs. In
practice, this may become more important in the future
when SNP density further increases above 50,000.

The optimal spacing of LD-SNPs cannot be deter-
mined without further comprehensive studies, taking
into account genotyping costs, accuracy of GEBVs,
and population structures. However, it is unlikely that
genotyping costs continue to decrease below a certain
number of LD-SNPs. For example, genotyping cost for a
LD-SNP spacing of 10 and 20 cM might not differ much,
if at all. The loss of accuracy, in contrast, was twice as high
for 20 cM than for 10 cM (Figure 3). Consequently, a
spacing of 10 cM may be more cost effective than a 20-cM
spacing, so that 330 LD-SNPs would be used for livestock
species. Panels of 384 SNPs are currently available on a
cost-effective basis. To trace alleles with similar precision
for all regions of the genome, LD-SNPs should be evenly
spaced. Alternatively, some LD-SNPs could be selected
that are located closer to potential QTL positions, which
could increase the accuracy of GEBV based on LD-SNP
panels. The disadvantage is that a suboptimal spacing
may reduce the accuracy of GEBV for other traits.

Prediction of GEBVs: The loss of accuracy (absolute
and proportional) with ELD-10 and ELD-20 clearly
increased from one generation to the next, because
uncertainty about the grandparental origin of HD-SNP
alleles accumulates over generations (Figure 3, Table 3).
It will continue to increase in subsequent generations,
unless HD-SNP haplotypes of parents are obtained by
genotyping the parents for HD-SNPs. In that case, the
loss of accuracy will be much lower, as illustrated by
results for strategies ELD-101 and ELD-201 in Figure 3
and Table 3, noting that HD-SNP haplotypes of the
parents were assumed known here. Moreover, because
the precision of PDMs is constant over generations for
these two strategies and the accuracy of GEBVs obtained
by BayesB will not decrease notably after information
from genetic relationships captured by markers has
vanished (Habier et al. 2007), their proportional loss
of accuracy will remain constant.

The proposed ELD-GS approach uses three types of
information to predict GEBVs of selection candidates.
First, both linkage disequilibrium between QTL and
HD-SNPs and additive-genetic relationships captured
by HD-SNPs are used to estimate effects of HD-SNP
alleles. Then, cosegregation of LD-SNPs is used to
trace the effects of HD-SNP alleles across generations.
The accuracy of the ELD-GS approach could be
improved by using the information from cosegrega-
tion not only for tracing, but also to estimate HD-SNP
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effects if individuals in later generations also have
phenotypes.

LD-SNP panels based on selected HD-SNPs: The
second objective of this study was to evaluate the loss of
accuracy for LD-SNP panels on the basis of selected HD-
SNPs. Strategy SLD-BB-110, which used the top 110 SNPs
on the basis of BayesB analysis of the HD-SNP training
data, was superior to all other LD-GS methods, and the
SLD-FSS-110 strategy, which picked 110 SNPs on the
basis of forward least-squares regression, was always
worst. Strategy SLD-FSS-0.01, which picked between 30
and 35 SNPs that met the 0.01 significance criterion, had
lower accuracy than both SLD-BB-40 and ELD-101, but
was better than ELD-10 if the number of QTL was low.
For all SLD strategies, except SLD-FSS-110, the loss of
accuracy increased with the number of QTL. The reason
for this is that the selected SNPs explain less genetic
variation if genetic effects are spread over more QTL,
such that the accuracy that is attained is lower. Accuracy
is also reduced if the SNPs that are selected are false
positives. This was the case for strategy SLD-FSS-110, es-
pecially when the number of QTL was low, which ex-
plains why SLD-FSS-110 had the highest loss at 100 QTL
(Table 3). Furthermore, the increasing loss over gen-
erations for SLD-FSS-0.01 at a higher number of QTL
shows that this approach is less able to capture infor-
mation from disequilibrium than LD-GS methods based
on effects estimated by BayesB, for which the loss de-
creased over generations (Table 3). This can be conclu-
ded because the impact of disequilibrium on accuracy
of GEBVs increases over generations, whereas that of
genetic relationships declines (Habier et al. 2007).

Application of LD-GS in breeding: The full potential
of GS can be exploited only if it is cost effective in all four
selection paths that contribute to typical genetic im-
provement programs in livestock. When based on loss of
accuracy compared to HD-GS, inclusion of SNPs that
were fitted most frequently in BayesB on an LD-SNP
panel seems to be the method of choice for a single trait.
The number of selected SNPs should not be too small;
otherwise the loss in accuracy can be substantial,
especially in the first generation after training and if
the number of QTL is large. This can be seen by
comparing results for SLD-BB-110 with those for SLD-
BB-40 in Table 3. An important disadvantage of marker-
selection approaches, however, is that different SNPs are
likely to be selected for different traits such that an LD-
SNP panel developed for one trait would probably work
less well for another trait. If each economic trait requires
its own LD-SNP panel, costs for development and geno-
typing may not be lower than for the HD-SNP panel. The
ELD-GS strategies, in contrast, are trait independent,
because the information from cosegregation of LD-SNP
alleles can be utilized with one LD-SNP panel for all
traits. It is even likely that LD-SNP panels can be deve-
loped that work well across populations, breeds, and
generations, whereas marker-selection approaches may

require different panels in different breeds and across
generations. Moreover, the panel used for ELD-GS is
independent from the statistical model used to estimate
genetic effects. In addition, it can trace not only effects
of QTL or markers, but also dominance and epistatic
effects. Another advantage of ELD-GS is that it selects
on the whole genome. Marker-selection approaches, in
contrast, may select on certain portions of the genome,
which could have consequences for fixation of undesir-
able alleles or loss of favorable alleles in portions of the
genome that are not covered by the selected SNPs.
Finally, the ELD-SNP panels should also be suitable for
parentage verification and traceability, allowing a single
panel to meet multiple needs.

To limit the loss of accuracy using ELD-GS, parents
that are used for breeding could be HD genotyped each
generation. The reduced loss of accuracy of ELD-101

over ELD-10 demonstrates the benefit of this. In this
case, parents are genotyped twice, first using the LD-SNP
panel as selection candidates and then using the HD-
SNP panel to infer HD-SNP haplotypes. This has to be
taken into account when calculating genotyping costs.
The HD genotyping may not be needed for all parents,
in particular those that have low economic benefit in a
breeding program, for example, production cows in a
dairy cattle improvement program. In addition, depend-
ing on the family structure, HD genotypes may be deri-
ved with sufficient accuracy on some parents on the basis
of LD genotypes. Further optimization is warranted to
determine which individuals should be HD genotyped.

Because the actual number of QTL is unknown in
reality, an LD-GS approach should perform well regard-
less of the number of QTL. The ELD strategies appear
to have this advantage. Strategy SLD-BB-110 always had
the lowest loss of accuracy but loss increased with the
number of QTL. Strategies SLD-BB-40 and SLD-FSS-
0.01 lost substantial accuracy at a high number of QTL.
Economic analyses are required to determine which
LD-GS approach is optimal for each of the four selection
paths on a case-by-case basis. Genotyping technology
may be improved in the future such that HD-SNP panels
will become comparable in cost to LD-SNP panels, but
until then ELD-GS will contribute to utilizing the
potential of GS in livestock.

Conclusions: The number of markers that selection
candidates are genotyped for to predict GEBVs using
HD-SNP panels can be reduced substantially with lim-
ited loss of accuracy in comparison to HD genotyping of
selection candidates. For a specific trait, the loss in
accuracy is smallest if the markers that are fitted most
frequently in the MCMC algorithm of BayesB are in-
cluded on a LD-SNP panel. The loss in accuracy is low
for this approach across generations following training
and the number of QTL affecting the quantitative trait.
Strategies that select markers using FSS, in contrast, are
inferior to marker selection using BayesB and their loss
of accuracy depends greatly on the number of QTL,
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which is unknown in reality. Strategies that select markers
on the basis of the data, however, result in SNP panels
that are trait dependent. In contrast, the ELD strategies
that place LD-SNPs evenly spaced across the genome
and use these to trace HD-SNPs from HD-genotyped
ancestors to selection candidates are trait independent.
The loss of accuracy for ELD-GS is also independent of
the number of QTL and smallest if HD-SNP haplotypes
of the parents of selection candidates are derived each
generation. In this case, the loss of accuracy in later
generations is constant. Further economic analyses are
needed to determine which LD-GS approach is cost
effective for specific breeding applications.
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