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ABSTRACT

A commonly used test for natural selection has been to compare population differentiation for neutral
molecular loci estimated by FST and for the additive genetic component of quantitative traits estimated by
QST. Past analytical and empirical studies have led to the conclusion that when averaged over replicate
evolutionary histories, QST ¼ FST under neutrality. We used analytical and simulation techniques to study the
impact of stochastic fluctuation among replicate outcomes of an evolutionary process, or the evolutionary
variance, of QST and FST for a neutral quantitative trait determined by n unlinked diallelic loci with additive
gene action. We studied analytical models of two scenarios. In one, a pair of demes has recently been formed
through subdivision of a panmictic population; in the other, a pair of demes has been evolving in allopatry
for a long time. A rigorous analysis of these two models showed that in general, it is not necessarily true that
mean QST¼ FST (across evolutionary replicates) for a neutral, additive quantitative trait. In addition, we used
finite-island model simulations to show there is a strong positive correlation between QST and the difference
QST � FST because the evolutionary variance of QST is much larger than that of FST. If traits with relatively
large QST values are preferentially sampled for study, the difference between QST and FST will also be large
and positive because of this correlation. Many recent studies have used tests of the null hypothesis QST¼ FST

to identify diversifying or uniform selection among subpopulations for quantitative traits. Our findings
suggest that the distributions of QST and FST under the null hypothesis of neutrality will depend on species-
specific biology such as the number of subpopulations and the history of subpopulation divergence. In
addition, the manner in which researchers select quantitative traits for study may introduce bias into the
tests. As a result, researchers must be cautious before concluding that selection is occurring when QST 6¼ FST.

IDENTIFYING signatures of natural selection based on
patterns of genetic variation within and among pop-

ulations is a long-standing goal in population genetics.
Distinguishing between natural selection and neutral
processes such as genetic drift and gene flow is central
to testing the hypothesis that selection is primarily re-
sponsible for patterns of phenotypic variation in natural
populations. In the past 15 years, comparisons of two
statistics, FSTand QST, have been used to test for the action
of natural selection on quantitative traits in subdivided
populations. The fixation index FST is a measure of pop-
ulation differentiation defined as the ratio of among-
deme to total variance at the allelic level (Wright 1951),
and QST is the analogous ratio of among-deme to total
additive genetic variation for quantitative phenotypes
(precise definitions of both these quantities are given
below).

Theoretical analyses and simulations have indicated
that under neutrality, FST and QST should be equal. In
particular, Lande (1992) showed that in a finite-island
model and in a metapopulation model with extinction
and recolonization, FST described the differentiation of

a neutral quantitative trait among subpopulations, i.e.,
that FST ¼ QST. Spitze (1993) used Lande’s result as a
null hypothesis to argue that diversifying selection was
acting in populations of Daphnia obtusa; in this work
Spitze coined the name QST. Whitlock (1999) used a
coalescent argument to generalize Lande’s (1992) results
to additional population structures, including stepping-
stone models, under drift–mutation equilibrium. Le

Corre and Kremer (2003) related QST to FST for traits
under selection, arguing that QST should be greater than
FST under diversifying selection (i.e., selection for differ-
ent trait optima in different demes in a subdivided
population) and less than FST under uniform selection
(i.e., selection for the same optimum in all demes). Le

Corre and Kremer (2003) paid particular attention to
covariances between loci, pointing out that when link-
age disequilibrium contributed equally to within- and
between-deme trait variances, their formula predicted
equal values ofQST and FST evenfora trait under selection.

Further studies have examined the influence of
additional evolutionary factors, such as gene action, on
QSTand its relationship to FST. López-Fanjul et al. (2003)
showed that with neutral evolution of a quantitative
trait, dominance causes QST to be ,FST for low to
moderate recessive allele frequencies and QST to be
.FST otherwise. Epistasis also broadens the range of
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allele frequencies that cause QST to be ,FST. More
recently, Goudet and Büchi (2006) confirmed that
dominance tends to depress QST for a neutral quantita-
tive trait and further showed that the effect of domi-
nance disappears with consanguineous mating due to
the resulting deficit of heterozygosity.

A number of empirical studies have accordingly been
performed using the difference between QST and FST as
an indicator of the presence, and type, of selection acting
on traits in a variety of organisms (Steinger et al. 2002;
Palo et al. 2003; Saint-Laurent et al. 2003; Baruch et al.
2004; Le Corre 2005; Conover et al. 2006; Johansson

et al. 2007; Knopp et al. 2007; Roberge et al. 2007;
reviewed in Merilä and Crnokrak 2001; McKay and
Latta 2002; Leinonen et al. 2008). Meta-analyses of
numerous studies have found that QST tends to be .FST

(Merilä and Crnokrak 2001; McKay and Latta 2002;
Leinonen et al. 2008). These results from empirical
studies have been interpreted widely as evidence that
quantitative traits are commonly influenced by natural
selection and that diversifying selection is more common
than balancing selection in natural populations (Merilä

and Crnokrak 2001; McKay and Latta 2002; Leinonen

et al. 2008). A direct approach that exposed experimental
Arabidopsis thaliana populations to various levels of di-
versifying and balancing selection found that mean QST

for seven traits did increase with heterogeneous selection
pressures among demes at the largest effective popula-
tion size used in the study (Porcher et al. 2004, 2006).
Similarly, Morgan et al. (2005) compared FST and QST in
mice with a known history of selection for wheel-running
activity and the genetically correlated trait of body mass.
They found that QST . FST among groups that experi-
enced divergent selection pressures, but that this conclu-
sion was contingent on confidence intervals calculated
with a nonparametric bootstrap procedure (confidence
intervals calculated with a parametric bootstrap pro-
cedure were overlapping).

Despite the growing number of empirical studies
comparing QST and FST, some theoretical questions ger-
mane to their interpretation remain unaddressed. In
particular, the original theoretical arguments that led to
the conclusion that QST should equal FST under neutral-
ity bear revisiting in a way that explicitly incorporates the
effects of random fluctuations in allele frequencies and
across loci for independent replicate populations that
evolve neutrally. Such random fluctuation among replicate
outcomes of an evolutionary process is called ‘‘evolu-
tionary variance’’ in the context of coalescent models.
It is necessary to estimate (e.g., through simulations)
the evolutionary variance of QST and of the difference
QST � FST under the null hypothesis of neutrality to
understand the relationship between QST and FST

when a quantitative trait and marker allele frequen-
cies are both evolving neutrally. A formal test of the
hypothesis that selection is acting requires knowle-
dge of the ‘‘evolutionary sampling distribution’’ of

QST � FST. Only by comparing measured values of this
difference with such a distribution can one determine
that the difference is large enough to reject the null
hypothesis of neutrality.

We stress here and below the distinction between
evolutionary variance and sampling variance. Through-
out this article we use the terms QST and FST to denote
parameters, that is, exact quantities describing entire
populations. Others have used the terms QST and FST to
denote statistics, that is, estimates of underlying param-
eters that are calculated from sample data. To create
confidence intervals, or otherwise understand the error
inherent in estimation from a sample, one must
ascertain the sampling variance of the statistic used.
This has been done for estimators of FST (e.g., Pons and
Chaouche 1995; Weir 1996), as well as for estimators of
QST in recent work (O’Hara and Merilä 2005; Goudet

and Büchi 2006). Even with complete census data (i.e.,
zero sampling variance), however, evolutionary variance
would still result in a range of values for QST, FST, and the
difference QST � FST. Only by understanding the evo-
lutionary sampling distributions of the underlying
parameters QST and FST, over all possible outcomes of
a stochastic evolutionary process, can we determine
what values of QST and FST are not expected for neutral
traits and therefore can serve as evidence of selection.

In this article we analyze the effect of evolutionary
variance on FSTand QST through analysis and simulation
of a neutral quantitative trait determined by n unlinked
diallelic loci acting additively in a population composed
of two demes. The additive effects of the loci on the
quantitative trait are not necessarily equal. In the second
and third sections (definitions and theory and
analytical examples) we rederive expressions for
QST and for FST at the loci contributing to the neutral
trait, following Le Corre and Kremer (2003). We obtain
conditions under which the expectations (across repli-
cate evolutionary histories) of QST and FST will be equal
under neutrality and provide examples showing that
equality need not hold even for an additive quantitative
trait. In the fourth section (simulations) we explore
the joint sampling distribution of QST and FST under
neutrality through simulations. In the final section we
discuss the implications of our findings for hypothesis
tests constructed around the difference between QST

and FST in subdivided populations.
We emphasize again that throughout this article the

terms QSTand FSTrefer to population parameters, not to
statistics that estimate these parameters from samples of
populations and individuals.

DEFINITIONS AND THEORY

We consider d demes of N diploid individuals each
and n diallelic loci (with alleles denoted by 1 and –)
contributing additively to a quantitative trait.
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We first define some necessary quantities. When
discussing FST and FIS, the underlying variable is
an indicator variable x̃i for the 1 allele at locus i;
thus, x̃i ¼ 1 if an allele is 1 and x̃i ¼ 0 if the allele is –. We
let pik denote the mean of x̃i in deme k, i.e., the fraction
of 1 alleles at locus i in deme k; we let pi denote the
overall fraction of 1 alleles at locus i in the population
(composed of two or more demes). Thus

pi ¼
1

d

Xd

k¼1

pik : ð1Þ

We let q ¼ 1 � p with any subscript. We let

s̃2
i ¼ piqi ð2Þ

denote the total variance of x̃i in the population,

s̃2
Bi
¼ 1

d

Xd

k¼1

ðpik � piÞ2 ð3Þ

the between-deme variance, and

s̃2
0Wi
¼ 1

d

Xd

k¼1

�
p2

ikð1� pikÞ2 12pikqik

�
1

2
� pik

�2

1q2
ikð0�pikÞ2

�

¼ 1

2d

Xd

k¼1

pikqik
ð4Þ

the average within-deme variance of x̃i expected in a set
of random-mating demes with 1 allele frequencies pik.
(In Equation 4, the middle term is obtained as the sum
of squared deviations of x̃i from the mean for each
haplotype, weighted by the frequencies of the haplo-
types.) The fixation index FSTi

at locus i and the overall
multilocus fixation index FST are then defined as

FSTi ¼
s̃2

Bi

s̃2
i

¼
s̃2

Bi

s̃2
Bi

1 2s̃2
0Wi

;

FST ¼
P

n
i¼1 s̃2

BiP
n
i¼1ðs̃2

Bi
1 2s̃2

0Wi
Þ ¼

P
n
i¼1 s̃2

BiP
n
i¼1 piqi

: ð5Þ

We note that our definition of FST, which averages
variances over all loci before taking a ratio, is analogous
to the preferred estimator of FST proposed by Weir and
Cockerham (1984).

We let p11ik denote the frequency of individuals in
deme k with two 1 alleles at locus i, with p1�ik and p��ik

defined analogously. We define the inbreeding coeffi-
cient FISik

as the correlation in deme k between the
indicator variables for homologous alleles at locus i
within an individual:

FISik ¼
p11ikð1� pikÞ2 1 p1�ikð1� pikÞð0� pikÞ1 p��ikð0� pikÞ2

pikqik

¼ 2pikqik � p1�ik

2pikqik
: ð6Þ

To discuss QST, we must define trait means and
variances. We denote the additive effect of locus i by ai

and the phenotypic value at the ith locus in the jth
individual in deme k by xijk. We let pijk denote the
fraction of 1 alleles at locus i in that individual, so that
pijk can take on the genotypic values 0, 1

2, or 1. Under
additivity, therefore, we find that the phenotypic value
of the jth individual in deme k is given by

xjk ¼
Xn

i¼1

xijk ¼
Xn

i¼1

2ai

�
pijk �

1

2

�
: ð7Þ

We let

s2
GBi
¼ 4a2

i

d

Xd

k¼1

ðpik � piÞ2 ð8Þ

denote the between-deme component of the (additive)
genetic variance contributed by locus i. The between-
deme component of the total trait variance is given by

s2
B ¼

Xn

i¼1

s2
GBi

1
X
i9 6¼i

Covii9

" #
; ð9Þ

where

Covii9 ¼
1

d

Xd

k¼1

4aiai9ðpik � piÞðpi9k � pi9Þ ð10Þ

is the covariance between loci i and i9.
The between-deme trait variance can be partitioned

into two components: one comprising covariances
between loci contributing to the trait (quantitative trait
loci, QTL) and one comprising variances at individual
loci. We write the ratio of these two components as

uB ¼
Xn

i¼1

X
i9 6¼i

Covii9

" #. Xn

i¼1

s2
GBi

" #
; ð11Þ

so that

s2
B ¼ ð1 1 uBÞ

Xn

i¼1

s2
GBi
: ð12Þ

As noted by Le Corre and Kremer (2003), the quantity
uB is a measure of gametic disequilibrium among QTL
contributing to the trait. If the trait is neutral, then it
should average to zero across replicate evolutionary
histories (Rogers and Harpending 1983). We see
below that writing QST in terms of uB and its within-
deme analog uW facilitates comparison of QST and FST.

Analogously to (4), we define the within-deme ge-
netic variance that would be expected in a random-
mating population with 1 allele frequencies pik,

s2
0W ¼ ð1 1 uWÞ

Xn

i¼1

Xd

k¼1

2a2
i

d
pikqik ; ð13Þ
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where uW is the ratio of average within-deme covariances
between indicator variables for different loci to average
within-deme additive genetic variance. In other words,

uW ¼
1

d

Xd

k¼1

Xn

i¼1

X
i9 6¼i

Covii9k

" #.
s2

GW; ð14Þ

where

Covii9k ¼
1

N

XN
j¼1

4aiai9ðpijk � pikÞðpi9jk � pi9kÞ ð15Þ

and

s2
GW ¼

1

Nd

Xd

k¼1

Xn

i¼1

XN
j¼1

ðxijk � xikÞ2

¼ 4

Nd

Xd

k¼1

Xn

i¼1

a2
i

XN
j¼1

ðpijk � pikÞ2: ð16Þ

As with uB (defined above), uW is the ratio of the
component of within-deme trait variance that is due to
covariances between loci to the component due to
individual loci and is expected to be zero for a neutral
trait (Rogers and Harpending 1983). Also, it is
straightforward to check that uW ¼ 0 within a single
population if Hardy–Weinberg equilibrium holds.

In the notation we have now established, the within-
deme component of total trait variance is s2

GWð1 1 uWÞ.
Also,

s2
GW ¼

Xn

i¼1

Xd

k¼1

2a2
i

d
pikqik

�
1 1 FISik

�
; ð17Þ

so if FISik
¼ FIS for all i and k, then

s2
GW ¼ ð1 1 FISÞs2

0W: ð18Þ

Analogously to (5), and in keeping with the usage of Le

Corre and Kremer (2003), we finally define

QST ¼
s2

B

s2
B 1 2s2

0W

: ð19Þ

This is the same as s2
B=(s2

B 1 2s2
GW) if mating is random

(so FIS ¼ 0).
We now consider the relationship between FST and

QST. First, from (8), (12), (13), and (19) we obtain

QST ¼
ð1 1 uBÞ

Pn
i¼1

Pd
k¼1 a2

i ðpik � piÞ2
ð1 1 uBÞ

P
n
i¼1

P
d
k¼1 a2

i ðpik � piÞ2 1 ð1 1 uWÞ
P

n
i¼1

P
d
k¼1 a2

i pikqik
;

ð20Þ
while from (3)–(5) we obtain

FST ¼
P

n
i¼1

P
d
k¼1ðpik � piÞ2P

n
i¼1

P
d
k¼1ðpik � piÞ2 1

P
n
i¼1

P
d
k¼1 pikqik

: ð21Þ

Comparison of (20) and (21) shows that if uB ¼ uW, and
if in addition all QTL have equal effects on the trait (i.e.,
ai ¼ a for all i), then QST ¼ FST. This was observed by Le

Corre and Kremer (2003), although they did not
examine the case of unequal ai. As Le Corre and Kremer

(2003, p. 1207) noted, the condition that uB ¼ uW means
that ‘‘linkage disequilibrium among QTL contributes
equally to the within- and between-deme variances for
the trait.’’ This condition does not seem to have an
intuitive biological interpretation, except when both uB

and uW are zero, as would be expected (on average across
evolutionary replicates with random mating) for a
neutral trait (Rogers and Harpending 1983).

Alternatively, using (3)–(5) one can show that

FSTi
¼ ð1=dÞ

P
d
k¼1ðpik � piÞ2
piqi

; ð22Þ

then from (22) and (20) it eventually follows that

QST ¼
ð1 1 uBÞ

P
n
i¼1 a2

i piqiFSTiP
n
i¼1 a2

i piqi ðuB � uWÞFSTi 1 ð1 1 uWÞ½ � : ð23Þ

Thus if uB ¼ uW and if

FSTi
¼ FST for all i; ð24Þ

we have QST ¼ FST. However, we do not have QST¼ FST in
general.

If testing a null hypothesis of neutral evolution is the
goal, then we must ascertain whether the expectations
E ½QST� and E ½FST�, taken over replicate populations (i.e.,
replicate evolutionary histories), are equal. If uB ¼ uW

(as would be true if both are equal to zero), we have

QST ¼
P

n
i¼1 a2

i piqiFSTiP
n
i¼1 a2

i piqi
: ð25Þ

We see from (22) and (25) [using (1)] that both QSTand
FST are nonlinear functions of the random variables pik.
Thus even if the ratio of the expected values of the
numerator and denominator of QST does equal the
expected value of FST, there is no reason to anticipate
that E ½QST� will also equal E ½FST� .

If uB and uW are not constrained to be equal, then QST

and FST will be nonlinear functions of these two quanti-
ties as well as of the allele frequencies pik. It is conceivable
that in this case uB and uW could vary across evolutionary
replicates in such a way as to make E ½QST� ¼ E ½FST�.
However, we are not aware of any biological mechanism
that could plausibly produce such a phenomenon,
except as a rare coincidence.

ANALYTICAL EXAMPLES

We now provide several concrete examples to show
that it is indeed possible for the expected values of
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E ½QST� and E ½FST� to differ, even for a neutral, additive
trait. We remind the reader that we are not concerned
with detecting bias in estimators of QST and FST, which
would involve calculating the expectations of the
estimators over repeated samples from the same pop-
ulations and comparing them with the value of the
parameters QST and FST in those populations. Rather,
we are concerned with the values of QST and FST

themselves (known exactly for each evolutionary repli-
cate), averaged over all possible outcomes of a stochastic
evolutionary process.

Our examples concern populations composed of
two isolated demes and a neutral trait determined by
two diallelic loci. They compare QST with FSTcalculated
for the loci contributing to the trait. Before presenting
our examples in detail, we note that they hinge on a
simple principle: genetic drift produces variance in
neutral allele and haplotype frequencies across evolu-
tionarily replicate lineages. This produces evolution-
ary variance in QST and FST as well, because FST and
QST for an additive trait are simply nonlinear functions
of allele and haplotype frequencies (viz. Equations
20 and 21).

In other words, QST and FST can be viewed as random
variables, which take on different values in different
replicate populations. These values depend only on
allele and haplotype frequencies, together with the
effect sizes of the relevant QTL. Indeed, if Hardy–
Weinberg equilibrium holds, then only allele frequen-
cies and effect sizes are required to compute QST

and FST. Therefore, if we postulate a distribution of
allele frequencies across evolutionary replicates, this
in turn yields distributions of QST and FST. In what
follows, we approximate the means of such distribu-
tions. For populations in Hardy–Weinberg equilib-
rium, we find that these means are functions simply
of allelic effect sizes and of parameters describing
distributions of allele frequencies across replicate
populations.

Numerous calculations in this section were per-
formed with the computer algebra software Maple
(version 9); the Maple worksheets are available upon
request.

We recall that we consider populations composed of
two isolated demes, denoted 1 and 2, and two diallelic
loci, denoted A and B. The allelic effects of the loci are
aA and aB; the frequency of 1 alleles at locus A in
population 1 is denoted pA1, with pB1, pA2, and pB2

defined similarly. We assume throughout this section
that uW ¼ 0, which will be the case if Hardy–Weinberg
equilibrium holds within demes. As for uB, it follows
from Equation 11 that in the present case

uB ¼
2aAaBðpA1 � pA2ÞðpB1 � pB2Þ

a2
AðpA1 � pA2Þ1 a2

BðpB1 � pB2Þ
: ð26Þ

Thus Equations 20 and 21 for QST and FST become

QST ¼
ð1=2Þð1 1 uBÞða2

AðpA1 � pA2Þ2 1 a2
BðpB1 � pB2Þ2Þ

ð1=2Þð1 1 uBÞða2
AðpA1 � pA2Þ2 1 a2

BðpB1 � pB2Þ2Þ
1 a2

AðpA1ð1� pA1Þ1 pA2ð1� pA2ÞÞ
1 a2

BðpB1ð1� pB1Þ1 pB2ð1� pB2ÞÞ

0
B@

1
CA
ð27Þ

and

FST ¼
ðpA1 � pA2Þ2 1 ðpB1 � pB2Þ2

ðpA1 1 pA2Þð2� pA1 � pA2Þ1 ðpB1 1 pB2Þð2� pB1 � pB2Þ
:

ð28Þ

For the population model we have specified, we can
therefore express both QSTand FST in the case of Hardy–
Weinberg equilibrium as functions of allele frequencies
and effect sizes alone [by combining (27) with (26)].
This will allow us to draw conclusions about the
evolutionary sampling distributions of QST and FST once
we have specified distributions for the allele frequen-
cies. We choose the allele-frequency distributions to
model two scenarios. In the first scenario, two demes
have recently arisen through subdivision of a previously
panmictic population. In the second scenario, two
demes have been evolving in isolation for a long time.
By analyzing Equations 26–28 for each scenario, we
obtain concrete examples that provide insight into how
the distributions of QST and FST can behave. Among
other findings, we show that it is not generally true that
mean QST for a neutral, additive trait equals mean FST

for a neutral marker. Although the relevant formulas are
somewhat complicated, the principle behind the calcu-
lations is not: in the simple demographic and genetic
model that leads to (26)–(28), QST and FST depend only
on allele frequencies and allelic effect sizes.

Recent subdivision: Our aim is to calculate the
expectation E ½QST � FST� over a set of replicate (struc-
tured) populations, for specific examples. To do so, we
let fA1(p) denote the probability distribution of the
allele frequency pA1 across replicates. For a first exam-
ple, we specify a probability distribution whose graph is a
tall, narrow rectangle. Thus

fA1ðpÞ ¼
1
2e p0

A1 � e # p # p0
A1 1 e

0 jp � p0
A1j . e

�
ð29Þ

for some small positive number e; we specify fA2, fB1, and
fB2 similarly. When p0

A1 ¼ p0
A2 and p0

B1 ¼ p0
B2, the allele-

frequency distributions described by (29) can be viewed
as approximations of the distributions that would be
seen across replicates in which a panmictic ancestral
population had recently been divided into two subpo-
pulations. [We have not used more exact formulas for
these distributions (Kimura 1964) because to do so
would render the example analytically intractable.] In
this case p0

A1 and p0
B1 represent the ancestral allele

frequencies. At the moment of subdivision e (the width
of the distribution, correlated with variance) would
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equal zero; as time went on e would gradually increase as
genetic drift caused the subpopulations to diverge.

We assume all four allele frequencies to be indepen-
dent of each other (as should be the case in the absence
of selection and linkage), so that

E ½QST � FST�

¼
ð ð ð ð

ðQST � FSTÞfA1ðpA1ÞfA2ðpA2ÞfB1ðpB1ÞfB2ðpB2Þ

3 dpA1dpA2dpB1dpB2: ð30Þ

The integral obtained by substituting (27)–(29) into
(30) is analytically intractable. However, it can be
approximated by integrating a Taylor approximation
to the function QST – FST around the point (p0

A1;
p0

A2; p0
B1; p0

B2). The resulting integral is still too compli-
cated to be displayed in full generality, but can be
examined in particular cases. For example, if p0

A1 ¼
p0

A2 ¼ 1
2 and p0

B1 ¼ p0
B2 ¼ 1

4, then as e tends to zero we
find that E ½QST � FST� � �8e2(a2

A � a2
B)= 21(3a2

B 1 4a2
A).

From this expression we conclude that mean QST � FST

may be positive, negative, or zero for a neutral additive
trait, depending on mean allele frequencies and on the
relative effects of the loci contributing to the trait.

More generally, if we take

p0
A1 ¼ p0

A2 ¼ p0
A and p0

B1 ¼ p0
B2 ¼ p0

B ; ð31Þ

then

E ½QST � FST�

¼ e2ða2
A � a2

BÞðp0
A � p0

BÞðp0
A 1 p0

B � 1Þ
6½a2

Ap0
Að1� p0

AÞ1 a2
Bp0

Bð1� p0
BÞ�½p0

Að1� p0
AÞ1 p0

Bð1� p0
BÞ�

1 Oðe4Þ:
ð32Þ

We note that when (31) holds, mean QST and FST are
equal when e ¼ 0, that is, when there is no variance in
allele frequencies across replicate populations. The key
conclusion from (31) and (32) is that the evolutionary
variance in allele frequencies that results from genetic
drift can cause mean QST – FST to differ from zero even
when mean allele frequencies in the two demes (across
replicate populations) are equal.

We also note that in (32), the mean difference E[QST�
FST] depends on the ratio of allelic effects r ¼ aA/aB.
Mean QST and FST are equal to at least the second order
in e ½i:e:; to Oðe2Þ� when aA and aB are equal. This is not
always the case when (31) does not hold (calculations
not shown). However, since (31) should hold in
scenarios where two demes descend from a common
ancestral population, simulations of such scenarios that
use equal allelic effects may not detect a difference
between mean QST and FST. When the allelic effects aA

and aB are not equal, some additional calculation (not
shown) reveals that the O(e2) term in E[QST� FST] grows
toward finite limits as r tends either to infinity or to zero.
The precise values of the limits depend on the mean

allele frequencies p0
A and p0

B . Also, since (32) contains a
factor of e2 that corresponds roughly to the variability of
allele frequencies across demes, it suggests that the
difference between mean QST and FST will be negligible
immediately after subdivision (when e is very small) and
will then grow until the ‘‘narrow rectangle’’ model (29)
is no longer applicable.

We have just concluded that in our simple model of a
neutral trait in two demes that have recently emerged
through subdivision of a panmictic ancestral population,
the difference QST� FST can be of any sign. However, we
can also ask what happens when we examine a large
number of independent neutral traits, perhaps in
different organisms, in such pairs of demes. Thus, we
now examine the mean value E* of QST� FST, where the
average is taken over all possible traits determined
additively by two unlinked loci with a distribution of
allele frequencies as in (29).

Since the names of loci A and B are arbitrary, we may
assume that the ratio of effect sizes r ¼ aB=aA for each
trait is chosen from a distribution g ðr Þ satisfying g ðrÞ ¼
g ð1=r Þ for all r . 0, i.e., that the ratio aB=aA has the same
distribution as aA=aB . Since we are modeling two re-
cently isolated demes, we also assume that p0

A1 ¼ p0
A2 ¼

p0
A and p0

B1 ¼ p0
B2 ¼ p0

B , as in (31) above. It turns out that
these two assumptions alone suffice to constrain the
across-trait mean E*¼E [QST� FST] to be positive when e
is small [recall that e is the radius of the rectangular
distribution of allele frequencies in (29)]. To see this, we
first calculate the difference QST � FST, using (26)–(28)
and (31), and then exchange the allelic effects aA and aB

to create a new expression. Finally we average the new
expression with the original difference, which yields an
approximate expression for the mean value E* of QST�
FST:

E* ¼ e2ðpA0 1 pB0 � 1Þ2ðpA0 � pB0Þ2ða2
A � a2

BÞ2
ða2

B 1 a2
AÞðpB0ð1� pB0Þ1 pA0ð1� pA0ÞÞðpA0ð1� pA0Þ1 pB0ð1� pB0ÞÞ

1 Oðe2Þ:
ð33Þ

Since the mean allele frequencies pA0 and pB0 lie in the
interval [0, 1], we conclude from (33) that E* is always
positive for small e whenever pA0 and pB0 differ from
each other and at least one of these frequencies lies
strictly between 0 and 1. Biologically, this suggests that if
many independent neutral, additive traits are measured
in populations consisting of two demes that have
recently arisen through subdivision of a panmictic
ancestral population, the mean difference QST � FST

for these traits is likely to be positive. However, the
methods used to arrive at this finding do not allow us to
estimate the magnitude of the difference.

Long evolution in allopatry: It is also possible to
investigate the mean difference between QST and FST

over replicate evolutions in which two demes have
evolved in allopatry for a long time after population
subdivision and are therefore more diverged in allele
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frequency than in the first example. We consider a
neutral trait determined additively by two loci, as in the
previous scenario, and we retain notation (aA, pA1, etc.)
from that scenario. The first task is to specify probability
distributions, analogous to (29), for the allele frequen-
cies at the two loci. These are obtained from Kimura

(1964), who showed that if mutation is negligible, in this
scenario we can expect that fixation or loss at an
originally segregating locus will occur in more and
more replicate demes as time goes on. At loci and in
populations where segregation persists, allele frequen-
cies will become approximately uniformly distributed.

If we consider numerous replicate pairs of demes
evolving in allopatry, we can separate the replicate pairs
into groups according to Kimura’s (1964) result. For
example, one group consists of pairs in which segrega-
tion persists at both loci in both demes, another group
consists of pairs in which fixation of the 1 allele at locus
A has occurred in deme 1 but segregation persists at
locus A in deme 2 and at locus B in both demes, and so
on. All possible groups are enumerated in Table 1.

It is possible, using the integration formula (30), to
calculate numerically (and sometimes analytically) the
sign of the difference QST � FST averaged over all
replicate evolutions in a group for a specified genetic
architecture. As with the previous scenario (short evolu-
tion in allopatry), in many cases it turns out that QST �
FST can be positive, negative, or zero, depending on the
ratio of allelic effect sizes r ¼ aB=aA (calculations not
shown).

To calculate the grand mean E* of QST � FST over all
replicate evolutions for all two-locus additive traits, we
should first find the mean value of QST � FST for each
group and then take a weighted average of the within-
group means. This would require knowledge of the
relative frequencies of all the groups, which in turn
depend on the time since subdivision of the ancestral
population as well as on the initial distribution of allele
frequencies. It is therefore impossible to compute a
‘‘one size fits all’’ numerical value for E*.

However, it turns out that it is possible to determine
the sign of E*, assuming only that evolution in allopatry
without significant mutation has been going on for a
long time and that the initial distributions of allele
frequencies were symmetrical with respect to perturba-
tions of the labels A and B (for loci) and 1 and 2 (for
demes). To find the sign of E*, we first note that
although we cannot find numerical values for the
frequencies of the various groups, certain groups in
Table 1 must have equal frequencies. For example,
group 2 and group 3 must be equally frequent, because
within the class of deme pairs in which segregation
persists at locus A in deme 2 and at locus B in both
demes, fixation and loss at locus A in deme 1 should be
equally likely. The ‘‘frequency’’ column in Table 1 shows
these relationships; we note that group 9 occurs twice as
frequently as group 7.

Next, we observe that any combination of allele fre-
quencies and effect sizes, which we may express as a
vector C ¼ ½aA; aB ; pA1; pA2; pB1; pB2�, occurs with the

TABLE 1

Possible states of pairs of demes after long evolution in allopatry without mutation, migration, or selection

Locus A Locus B

Group Deme 1 Deme 2 Deme 1 Deme 2 E ½QST � FST� Frequency

1 Seg Seg Seg Seg ,0 A
2 0 Seg Seg Seg Depends B
3 1 Seg Seg Seg Depends B
4 0 0 Seg Seg 0 C
5 1 1 Seg Seg 0 C
6 0 1 Seg Seg Depends D
7 0 Seg 0 Seg Depends E
8 1 Seg 1 Seg Depends E
9 0 Seg 1 Seg ,0 2E
10 0 1 0 Seg Depends F
11 0 1 1 Seg Depends F
12 0 0 0 or 1 Seg 0 G
13 1 1 0 or 1 Seg 0 G
14 0 or 1 0 or 1 0 or 1 0 or 1 0 H

In the locus/deme columns, 1 means that the 1 allele is fixed, 0 means that the – allele is fixed, and ‘‘Seg’’
means that segregation persists. The E ½QST � FST� column contains the sign of the mean value of QST � FST for
pairs of demes in each group; ‘‘depends’’ means that the sign can be positive, negative, or zero, depending on
aA=aB . In the frequency column, groups with the same letter occur in replicate scenarios in equal proportions, if
loci are unlinked and if each scenario is initialized by choosing 1 allele frequencies for each locus and deme
from independent distributions symmetric about 1

2. The notation ‘‘2E’’ means that group 9 occurs twice as often
as groups 7 and 8.
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same frequency as the combination C* ¼ ½aB ; aA; pA1;
pA2; pB1; pB2� obtained by exchanging the values of aA

and aB in C. To determine the sign of E*, therefore, we
can proceed as follows. First, we numerically calculate
the value of mean QST � FST for each group listed in
Table 1, assuming uniform distributions of allele fre-
quencies at loci where segregation persists (we write the
mean for group i as E*

i ). We also calculate Ẽ*
i , the mean

values of QST � FST for each group i, but with the effect
sizes aA and aB exchanged. Next, we average the values of
E*

i and Ẽ*
i for all groups in each frequency class (given in

the rightmost column of Table 1) to obtain the mean
values of QST � FST for each frequency class.

The mean values obtained from this procedure
depend on the ratio of allelic effects aA=aB . If some of
these mean values are negative for all such ratios and
none are positive for any ratio, then it must be the case
that the overall mean E* of QST� FST is negative. In fact,
this is precisely what occurs (details may be viewed in a
Maple worksheet available from the authors upon
request); an example is plotted in Figure 1. Biologically,
this result means that for traits with genetic architecture
like that modeled here, QST is expected to be ,FST in
populations where two demes were created long ago by
subdivision of a panmictic ancestral population and
mutation is weak. The precise magnitude of mean QST�
FST cannot be determined without making additional
assumptions. However, the case of group 14 in Table 1
shows that it will be zero if no replicate populations
maintain segregating loci.

SIMULATIONS

To explore the relationship between QST and FST in a
more general finite-island model, we carried out two
types of stochastic simulations. One set of simulations
explicitly modeled individual organisms with multiple
unlinked loci contributing additively to a single quan-
titative trait, as well as a second collection of loci with no
phenotypic effects. The other set of simulations in-
corporated the same population structure and loci, but
allele frequencies were summarized at the level of
demes rather than being calculated from individual
genotypes. In all simulations, QST and FST were com-
puted from complete information on all loci, individu-
als, and demes. Therefore, the calculated values of QST

and FST were unaffected by sampling variance. Rather,
all variance among replicates arose from stochastic
variation among replicate outcomes of the same evolu-
tionary processes.

All simulations were written using the mathematical
software and programming language Matlab 7.0.1. The
deme-level simulations were executed using Matlab as
well, while the individual-based simulations were then
translated into C, compiled, and executed on a Beowulf
PC cluster.

Individual-based simulations: The individual-based
simulations modeled a monoecious diploid population
inhabiting two islands, with two unlinked loci (‘‘QTL’’)
contributing to a single neutral trait and four unlinked
loci (‘‘markers’’) with no phenotypic effect (except for
one set of replicate simulations that used 20 islands, 10
QTL, and 10 markers). Mutation was absent. Thus the
model used for individual-based simulations resembled
that used in the analytical examples section above,
with the main difference being the inclusion of migra-
tion in some of the simulation runs. The effective
population size of individual demes (N) was set to 100
or 500, and the rate of gene flow among demes (m) was
set to yield four values of Nm ranging from near
panmixia (Nm ¼ 10) to virtually complete isolation
(Nm ¼ 10�10).

To initialize the simulations, first two allelic effect
sizes (A and a) for each locus were chosen randomly
from independent, identical Laplace, or reflected
exponential, distributions. Next, initial frequencies of
the A allele for each locus were chosen randomly from
independent uniform distributions on [0, 1]. Finally,
each individual was randomly assigned alleles using
these frequencies. The two demes were initialized
identically, to represent recent subdivision of a panmic-
tic ancestral population. For each of the eight combi-
nations of N and Nm used, two initializations were
generated. One initialization was used in 100 replicate
simulations for 100 generations each, and the other
initialization was used in 100 replicate simulations for
1000 generations each. In each generation, migration

Figure 1.—Mean QST � FST across replicate populations in
groups 10 and 11 from Table 1, together with their equiva-
lents after exchanging the effect sizes aA and aB. These values
assume uniform distributions of allele frequencies (across
replicates) at loci where segregation persists. The value of
mean QST � FST depends only on the ratio aA=aB ; because
of the symmetry induced by exchanging aA and aB, including
ratios ,1 would simply reflect the graph across the vertical
line aA=aB ¼ 1.
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according to an island model preceded random mating
within demes. Each locus, whether QTL or marker, was
assumed to lie on a separate chromosome, giving a
recombination rate of 0.5 for all pairs of loci.

The neutral trait was strictly additive. Thus, trait
values were calculated by summing the allelic effects at
all QTL for each individual. QST was calculated accord-
ing to the formula of Le Corre and Kremer (2003).
This formula incorporates the inbreeding coefficient FIS

(Wright 1951); FIS was calculated as a ratio of variances
using data from all markers, summing over loci for the
numerator and denominator separately before dividing
as recommended by Weir and Cockerham (1984). FST

at the markers was calculated using Nei’s (1973)
formula for GST, a multiallelic analog that equals FST

when only two alleles are present. Both QST and GST for
each marker were calculated in every generation.

For each of the 17 sets of replicate runs, the final
values of QST and mean (over markers) GST were
averaged over the 100 replicates, yielding 17 values of
the means E[QST] and E[GST]. The difference E* ¼
E[QST] � E[GST] was negative in 14 of the 17 sets. In
addition, the absolute value of the difference E*
exceeded 20% of E[GST] in 8 of 16 sets (excluding
one set for which all but 4 runs led to near-complete
fixation and thus undefined QST and/or GST). E*
differed significantly from zero (at the 0.05 significance
level) in only three cases after Bonferroni correction;
however, in many cases the power of the t-test was
relatively low because both QST and FST had large
variance across replicate runs. In all three significant
cases, E* was negative. Thus the simulations provided
some confirmation for the analytical conclusion that
mean QST for an additive trait can differ from mean GST

under neutrality. Increasing the number of replicate
simulations, and thus the power of the t-tests used,
might lead to stronger conclusions.

As expected, both QST and GST tended to be higher in
more isolated pairs of populations (i.e., for lower values
of Nm). The difference E* showed no particular de-
pendence on Nm.

Analysis of E* computed after different numbers of
generations (100 vs. 1000) also yielded results consis-
tent with the analytical conclusion that mean QST is
expected to be less than mean GST after a long period of
evolution in allopatry. In particular, the mean value of
E* after 1000 generations was �0.0970, compared with
�0.0177 after 100 generations. Thus QST decreased,
relative to GST, over time. However, the differences were
not statistically significant: 95% confidence intervals for
E* were (�0.243, 0.049) after 1000 generations and
(�0.053, 0.017) after 100 generations.

The analytical prediction that mean QST is expected to
be less than mean GST in populations that have recently
become isolated was neither strongly supported nor
contradicted by the simulation results. As noted above,
the 95% confidence interval for E* after 100 generations

contained 0, although its center was negative. Grouping
the 100-generation runs by subpopulation size N, we
found that E* for N¼ 100 was�0.0379, while E* for N¼
500 was 0.00243. This suggests that even 100 generations
may have been too long to yield positive values of E* for
very small populations; we recall that the relevant
timescale for many population-genetic processes is in
units of N generations (Crow and Kimura 1970).
However, 95% confidence intervals for E* in both the
N ¼ 100 and the N ¼ 500 cases included 0, which is not
surprising given the small number of cases (4 for each).

Besides comparing the means of QST and GST via the
difference E*, it is useful to examine the joint distribu-
tion of these two quantities across replicate runs with the
same parameters and initial data, and in particular to
compare their standard deviations. In Figures 2 and 3,
we plot GST against QST for all replicate runs with two
different initializations and parameter sets. In both
plots, though QST and GST have similar means, QST is
much more variable than GST. This was typical for the
conditions simulated. Indeed, the ratio of standard
deviations s(QST)/s(GST) was 3.78 for the set of runs
that used d¼ 10 demes of N¼ 500 individuals each, with
10 QTL and 10 markers (depicted in Figure 3), and had
a median of 1.59 for the other sets of runs (excluding
one set for which all but 4 runs led to near-complete
fixation and thus undefined QST and/or GST; range
[0.0823, 2.08], with 12 of 15 sets yielding values .1). A
two-sided sign test comparing s(QST) with s(GST) for
the 16 sets of runs with meaningful output rejected the
null hypothesis that the probability of finding s(QST) .

s(GST) was 50% (P¼ 0.0213). This finding is of practical
importance in that the relatively large variability of
QST implies a strong correlation between QST and the
difference QST� GST that can aggravate bias in QST–GST

Figure 2.—GST (calculated using four markers) vs. QST (for
a neutral trait determined additively by two QTL) after 100
generations for 100 runs of an individual-based simulation
with d ¼ 2 initially identical demes of N ¼ 100 individuals
each, with a mean of Nm ¼ 0.1 migrants per deme per gener-
ation.
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comparisons (see the description of the deme-based
simulations below, as well as the discussion). It should
be noted that the difference between s(QST) and
s(GST) is sensitive to the number of independent
markers used to calculate GST. Indeed, when GST was
recalculated using a single marker, the hypothesis that
Pr(s(QST) . s(GST)) ¼ 0.5 could not be rejected (P ¼
0.2101).

Finally, we used the individual-based simulations to
assess the importance of uW, the ratio of within-deme
trait variance attributable to covariances between loci to
within-deme trait variance due to individual loci, in
Equation 20 for QST. To do so, we recalculated QST for
each run, using a formula that was the equivalent of (20)
with uW set to 0, as would be expected for a neutral trait
under random mating (Rogers and Harpending

1983). The resulting mean value of QST (over all runs
for a given set of parameters) changed by #1.4% and
the standard deviation of QST changed by #2.3%, with
no clear bias toward positive or negative changes. The
mean difference QST � GST changed by #6.6%, again
with no clear directional bias. Furthermore, in no case
was the sign of mean QST � GST changed from positive
to negative, or vice versa, by setting uW ¼ 0. Thus, the
main findings discussed above would remain unchanged
if uW were ignored. This justifies the use of (computa-
tionally much less expensive) deme-based simulations
in which uW is assumed to equal 0. We now outline the
results of such simulations.

Deme-based simulations: For the deme-based simu-
lations, a single additive quantitative trait was simulated
with contributions from 10 diallelic loci, each with a
phenotypic effect that could be specified individually.
Simulations used equal phenotypic effects at all QTL,
equal phenotypic effects at all QTL except for one or
two loci of major effect (e.g., 10 times larger than the
next largest effect), or QTL effects drawn from a gamma

distribution. Ten additional independent diallelic loci
not contributing to the quantitative trait were used to
estimate FST. This is approximately the mean number of
loci used to estimate FST in the studies summarized by
Merilä and Crnokrak (2001). All loci, whether QTL or
marker, were assumed to be independent, with a re-
combination rate of 0.5 for all pairs of loci.

The effective population size of individual demes (N)
was set to either 50 or 20, and the rate of gene flow
among demes (m) was set to 0.1, 0.025, 0.01, 0.001, or
0.0001 to yield six values of Nm ranging from 5 to 0.002.
Allele frequencies were initialized at 0.5 for all QTL and
marker loci in the results presented (although several
initial allele-frequency schemes including random fre-
quencies at all loci were examined). Simulations for 100
replicates of each set of conditions were run for 1000
generations for Nm between 5 and 0.02 and 10,000
generations for Nm of 0.002 in populations made up of
20 or 200 total demes.

In this section, we focus primarily on the results from
simulations with 20 demes and equal effects. (We
remind readers that while sampling from 200 demes is
virtually unheard of, we are not simulating sample data
but rather entire populations, which may more plausibly
contain large numbers of demes.) Simulation code was
written and executed in Matlab 7.0.1.

Since these simulations were carried out at the level of
allele frequencies within each deme as opposed to the
level of genotypes for each individual, large numbers of
demes, individuals, and QTL could be simulated in a
reasonable amount of computational time. As a result of
the deme-level simulation, however, the allelic covari-
ance among loci within individuals (uW in Equation 14)
could not be estimated. Since uW is expected to
approach zero under neutrality as the number of loci
and demes grows large (Rogers and Harpending

1983), and since analysis of individual-based simulations
suggested that uW could be ignored without meaningful
changes in the simulation results (see above), uW was set
to zero in calculations of QST based on Equation 20. This
assumption would not be warranted in simulations of a
quantitative trait under natural selection, since selec-
tion will cause correlations in allele frequencies between
loci both within individuals and between demes (Latta

1998, 2003; Le Corre and Kremer 2003). Estimates of
QST for simulated populations did explicitly incorporate
the allelic covariance over all pairs of loci between
demes by calculating uB using Equation 11.

Our analysis above assumed a 2-deme model; these
simulations used at least 20 demes (5-deme simulations
often reached global fixation and loss for Nm ¼ 0.002).
The genetic basis of the modeled quantitative trait was 2
loci in the analysis and 10 loci in the deme-based
simulations. Nevertheless, the results of the deme-based
simulations were consistent with those of the individual-
based simulations and thus indicated that those con-
clusions should apply even in situations involving large

Figure 3.—GST (using 10 markers) vs. QST (for a trait de-
termined by 10 QTL) after 1000 generations for 24 runs of
a simulation as in Figure 2 but with d ¼ 20, N ¼ 500, and
Nm ¼ 1.0.
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populations, large numbers of demes, numerous QTL,
and/or large numbers of markers. Here we focus on
both the distribution of FST � QST and the joint dis-
tribution of FST and QST.

The joint distribution of FST and QST from the 100
replicate runs for each value of Nm is shown in Figure 4.
The mean difference E[QST � FST] is negative (on
average across all runs for a given Nm), though not
significantly so due to the large variance. Furthermore,
E[QST � FST] is lower (i.e., more negative) for lower
values of Nm, which may be thought of as modeling
longer evolution in allopatry if time is measured in units
of Nm generations. This is consistent with the analysis in
the previous section that predicted negative values of
E[QST � FST] after long evolution with Nm ¼ 0.

In relative terms, the absolute value of E[QST� FST] in
20-deme simulations ranged from �25% of E[FST] for
Nm ¼ 5 to �6% of E[FST] for Nm ¼ 0.002. In 200-deme
simulations, the range was from �10% for Nm ¼ 5 to
�2% for Nm ¼ 0.002. These values suggest the relative
error that would be incurred in estimating QST from FST.

Figure 4 also illustrates that the evolutionary variance
of both FST and QST among replicate simulation runs for
a given parameter set is greatest for intermediate values
of Nm, which result in intermediate values of FST and
QST, and least when FST and QST are near zero or one.
At all levels of Nm, the evolutionary variance for QST is
markedly greater than for FST.

The joint distribution of QST � FST and QST from the
same set of 100 replicate runs for each value of Nm is
shown in Figure 5. We include this figure to emphasize
that there is a strong positive correlation between the
magnitude of the difference between QST and FST and
the value of QST itself. This correlation arises because
QST has much greater evolutionary variance and there-

fore makes a much greater contribution to the evolu-
tionary variance of the difference than does FST. In
effect, subtracting FST from QST simply adds ‘‘noise’’ to
the (obviously perfect) positive correlation between QST

and itself.
The mean of QST � FST is shown as a function of time

in Figure 6, with the standard deviation of QST � FST

shown extending above and below the mean. The mean
of QST � FST for the replicate simulations hovers near
zero for all values of Nm. Unless Nm is large, there is
substantial variability in QST � FST across replicate evo-
lutions of the quantitative trait. Any temporal trend in
QST � FST is weak compared to the amount of evolu-
tionary variance among replicates. The confidence
intervals for smaller values of Nm are somewhat asym-
metric around zero, with a larger number of replicates
having negative values of QST � FST.

Figures 4–6 show values for Nm ¼ 0.002 at 10,000
rather than 1000 generations. With such a low rate of
gene flow, elimination of short-term transient effects on
FST and QST takes many more generations than for
higher values of Nm. (We note that FST in a finite-island
model with no mutation eventually goes to zero as the
entire population approaches fixation or loss for all
alleles. Hence the point at which the simulations were
stopped is somewhat arbitrary, since there is no nonzero
equilibrium value of FST as there is in the infinite-island
model.)

As expected in a finite-island model, variance in QST�
FST among replicates was markedly greater in simula-
tions with 20 demes than in simulations with 200 demes.
Specifically, the standard deviation of QST � FST was
approximately three times greater in simulations with
20 demes than with 200 demes (�0.05–0.10 with 20
demes and �0.02–0.03 with 200 demes for Nm values

Figure 4.—The joint distribution of differenti-
ation at the quantitative trait (QST) and individ-
ual loci (FST) from finite-island model
simulations carried out over a range of values
for the product of the effective population size
of each deme (N) and the rate of gene flow into
each deme per generation (m). QST shows more
variation than FST for a given value of Nm. QST

and FST are each based on 10 independent dia-
llelic loci, the quantitative trait loci had equal
phenotypic effects, 100 replicate simulations
were carried out for each Nm value, and the total
population was 20 demes. Values at the 10,000th
generation are shown for Nm ¼ 0.002 and at the
1000th generation for all other Nm values.
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between 0.5 and 0.002). Simulations run with 20 and
200 demes also exhibited roughly the same large
positive correlation between QST and QST � FST (corre-
lation coefficient $0.92 with both 20 and 200 demes).
On the other hand, the mean values over replicate
simulations of the difference QST � FST were similarly
slightly negative in simulations with 20 and 200 total
demes, although with 200 demes there was less random

fluctuation. Simulations using a quantitative trait archi-
tecture with a single major gene yielded similar results
in 20 and 200 demes as well (mean QST � FST over
replicates slightly negative; standard deviation of QST �
FST over replicates �0.05–0.10 with 20 demes and
�0.02–0.03 with 200 demes for Nm values between 0.5
and 0.002; correlation between QST and QST � FST $

0.94).

Figure 5.—The joint distribution of
differentiation at the quantitative trait
(QST) by the difference between differ-
entiation at the quantitative trait and
individual loci (QST � FST). The differ-
ence between QST and FST is positively
correlated with QST. QST and FST are
each based on 10 independent diallelic
loci, the quantitative trait loci had equal
phenotypic effects, 100 replicate simula-
tions were carried out for each Nm
value, and the total population was 20
demes. Values at the 10,000th genera-
tion are shown for Nm ¼ 0.002 and at
the 1000th generation for all other Nm
values. These graphs use the same simu-
lation data sets as Figure 4.

Figure 6.—Mean difference between
differentiation at the quantitative trait
and individual loci (QST � FST) over
100 replicate simulations along with
two standard deviations above and be-
low the mean. QST and FST are each
based on 10 independent diallelic loci,
the quantitative trait loci had equal phe-
notypic effects, 100 replicate simulations
were carried out for each Nm value, and
the total population was 20 demes.
These graphs use the same simulation
data sets as Figures 4 and 5.
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DISCUSSION

Our rigorous analysis of the distributions of QST and
FST among evolutionarily replicate populations of two
demes each shows that mean QST need not equal mean
FST even for a neutral quantitative trait with additive
gene action. Indeed, mean QST for such traits is ex-
pected to exceed mean FST when a panmictic popula-
tion has recently been subdivided into separate demes,
while mean QST is expected to be less than mean FST in
demes that have evolved in isolation for a long time.
Nonlinear effects such as dominance and epistasis
played no role in our models. Thus, all that is required
for FST and QST to differ in expectation is that not all loci
contribute equally to the trait. Our simulations confirm
that the mean difference between QST and FST need not
be zero in the model under study, although the large
variance of both QST and FST resulted in relatively low
statistical power to detect this. The deviation of the
mean difference E[QST� FST] from zero may not always
be large enough to cause practical difficulties (see, for
example, Whitlock 2008), but our simulations show
that it can sometimes be substantial, e.g., as large (in
absolute value) as 25% of E[FST].

An obvious question is why the analytical findings
presented here differ from those of previous studies
(Lande 1992; Whitlock 1999), which found that QST¼
FST in expectation for an additive trait under neutrality.
The answer appears to be that previous work (Lande

1992; Whitlock 1999) calculated the expected values
of QST¼ FST by assuming that the mean of a ratio of two
quantities is equal to the ratio of their means. This
assumption is strictly correct only when the variance of
the denominator is zero (or in certain more specialized,
arcane examples). For example, Whitlock (1999)
noted that expressions obtained for components of
additive genetic variance are expectations across (evo-
lutionarily) replicate populations and that variance
components in any given population may differ from
these expectations. QST is computed as a quotient of
variance components. However, since QST is a nonlinear
function of the variance components [call it f(V)], it is
not necessarily the case that E[QST] ¼ f(E[V]), where E
denotes an expectation. The same generalization holds
for FST. Thus, the result obtained by Whitlock (1999) is
strictly applicable only in the case where variance
components are identically equal to their expectations
and not when evolutionary variance, i.e., variance
among replicate outcomes of the evolutionary process,
is taken into account. Similar considerations hold true
for the calculations of Le Corre and Kremer (2003). In
addition, the results of Le Corre and Kremer (2003) do
not account for stochastic variability in the values of FST

and FIS among different loci and further assume
additive effects to be equal for all loci.

We also note that while sampling from a larger
number of subpopulations will improve the precision

of individual QST estimates, the impact of evolutionary
variance can be evaluated only by sampling multiple
independent quantitative traits. This means that testing
the hypothesis that observed QST is consistent with
neutral evolution will be difficult for an individual
quantitative trait. In short, because the evolutionary
variance of QST � FST is large, tests for the presence of
selection on an individual trait will have little power.
Details of the population biology of a specific study
species will also affect the degree to which QST for one or
a few quantitative traits may be perceived as larger than
FST. Because the evolutionary variance of both FST and
QST is larger in populations with fewer subpopulations,
differences between estimated QST and FST for different
species could simply be a function of differences in
population structure rather than of differences in selec-
tion pressures.

Our simulations also indicate that QST has a larger
evolutionary variance than FST. This was noted by
Rogers and Harpending (1983), but seems to have
escaped notice more recently. (However, it has been
observed that the sampling variance of estimates of QST

is greater than that of estimates of FST; see, for example,
Koskinen et al. 2002; Palo et al. 2003; O’Hara and
Merilä 2005.) The difference in evolutionary variance
may be at least partially due to the fact that FST can be
calculated using multiple independent markers, thus
reducing ‘‘evolutionary sampling variability.’’ This find-
ing is reminiscent of a result due to Rogers and
Harpending (1983, p. 992), who showed theoretically
that ‘‘the variance of the [between-group] variance is
the same for polygenic characters as for single loci.’’

As a consequence, there is a strong positive correla-
tion between QST and the difference QST � FST. This
correlation has noteworthy implications for empirical
comparisons of QST and FST, since quantitative traits are
not often sampled at random for comparisons of QST

and FST. In fact, traits exhibiting large (or less commonly
small) phenotypic differences among subpopulations
are often the focus of detailed investigation with a
working hypothesis that natural selection is responsible
for their high level of variation among subpopulations.
If traits varying widely among subpopulations are
preferentially chosen for study because of their degree of
variation, then in statistical jargon a ‘‘selection bias’’
(having nothing to do with natural selection) exists in
favor of studying such traits. Large phenotypic differ-
ences among subpopulations should often correspond
to high QST values and therefore to high values of QST�
FST for neutral traits. Thus selection bias, if present, will
result in a preponderance of empirical studies that show
QST . FST, even if all the traits studied are in fact evolving
neutrally.

The results presented here pertain only to neutral
traits and do not contradict earlier results that predict
differences in QST and FST for traits under selection as in
Le Corre and Kremer (2003). However, our results do
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raise the question of what constitutes the proper test
statistic and sampling distribution to use in tests to
identify diversifying or stabilizing selection among
subpopulations. Indeed, if QST . FST can be observed
in neutrally evolving traits, what values of QST � FST

should lead us to reject the null hypothesis of neutrality
and conclude that natural selection is acting?

The gloomiest possible conclusion would be that
QST � FST comparisons cannot readily be used to test
for the action of selection on a particular trait, because
(a) the proper null hypothesis for the test is not clear,
(b) determining the proper sampling distribution from
which to calculate the P-value for the test would require
knowledge of QST for many independent neutral traits,
and (c) the large evolutionary variance of the difference
QST � FST will limit the power of the test. However, the
basic idea behind the use of QST � FST comparisons is
surely valid: atypically high or low between-population
trait variance (as measured by QST) is evidence of
diversifying or uniform selection, and since such vari-
ance depends on demographic parameters like migra-
tion, marker data (e.g., marker FST) should help to
establish the ranges of ‘‘typical’’ and ‘‘atypical’’ values for
QST. We suspect that it will be possible to improve upon a
QST–FST comparison test by comparing QST with some
function of data obtained from numerous markers dis-
tributed throughout the genome. However, this func-
tion might not correspond in a straightforward way to
marker FST. Further work will be needed to find an
optimal way to combine trait and marker data in a hy-
pothesis test for the action of natural selection on
quantitative traits in subdivided populations.
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