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ABSTRACT

Caenorhabditis elegans primarily reproduces as a hermaphrodite. Independent gene conversion events in
mutant obligately outcrossing populations of C. elegans [fog-2(lf)] spontaneously repaired the loss-of-function
mutation in the fog-2 locus, thereby reestablishing hermaphroditism as the primary means of reproduction for
the populations.

SPECIES within the genus Caenorhabditis employ
one of two modes of reproduction. Nine of the

11 Caenorhabditis species in culture (Kiontke and
Sudhaus 2006) are gonochoristic obligate female/
male outcrossers. Gonochorism is thought to be the
ancestral state within the genus (Schedl and Kimble

1988; Kiontke et al. 2004). The remaining two species,
Caenorhabditis elegans and C. briggsae, have an andro-
dioecious breeding system with populations composed
of self-fertile hermaphrodites and males at a low fre-
quency (,0.1%) (Ward and Carrel 1979; Hodgkin

and Doniach 1997). The two hermaphroditic Caeno-
rhabditis species are phylogenetically separated by two
gonochoristic species, suggesting that hermaphrodit-
ism (and an androdioecious breeding system) evolved
convergently in C. elegans and C. briggsae (Kiontke

et al. 2004). Moreover, the regulation of sperm produc-
tion in hermaphrodites in these two species differs in
important ways. For instance, the fog-2 locus is spe-
cifically required for spermatogenesis in C. elegans
hermaphrodites (Schedl and Kimble 1988; Nayak

et al. 2005). The appearance of fog-2 in the C. elegans
genome is thought to be an evolutionarily recent event
resulting from a gene duplication that may have
ultimately promoted the evolution of hermaphrodit-
ism (Clifford et al. 2000; Haag 2005; Nayak et al.
2005). Furthermore, C. elegans also requires fem-2, fem-
3, and tra-2 for spermatogenesis in hermaphrodites
whereas control of sperm production in C. briggsae
hermaphrodites occurs downstream of the fem genes
(Hill et al. 2006).

Loss-of-function mutations in fog-2 [fog-2(lf)] in C.
elegans result in a change from androdioecy to gonochor-
istic reproduction (Schedl and Kimble 1988). However,
extragenic mutations that suppress, at least to some de-
gree, the fog-2 mutant phenotype, have been found in
five different genes: tra-2, fem-3, gld-2, tra-3, and atx-2
(Barton et al. 1987; Schedl and Kimble 1988; Francis

et al. 1995a,b; Maine et al. 2004; Nayak et al. 2005). These
experiments have used either chemical mutagenesis or
RNA interference (RNAi) to discover alleles that restore
hermaphroditism in fog-2 mutants. Here we report that
spontaneous gene conversion involving the neighboring
paralog with an unknown function, ftr-1, can restore the
function of fog-2 in experimental populations. These
gene conversion events result in a fully functional her-
maphrodite that replaces the original fog-2 mutant in
experimental populations and may be more frequent
than point mutations in restoring the functionality of
fog-2(lf) mutants.

During an experimental evolution study comprising
74 fog-2(lf ) lines derived from the same ancestral pair, we
identified two independent instances in which fog-2
mutants (normally obligate outcrossers) had reverted
spontaneously to hermaphroditism. Revertant 1 ap-
peared in an experimental phase that involved repeated
population bottlenecks of two individuals per genera-
tion in conjunction with knockdown of the mismatch
repair gene msh-2 by a standard RNAi feeding protocol
(Kamath et al. 2000). Revertant 2 appeared during the
second phase of the experiment involving population
expansion in the absence of msh-2 RNAi. In each
instance, a putative case of reversion to hermaphrodit-
ism was detected by observing extremely biased sex
ratios in the offspring generation, namely, the near
complete absence of males (male–female crosses yield
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50:50 offspring sex ratios whereas males are rare or
absent in selfing hermaphroditic populations of C.
elegans). Reversion to functional hermaphroditism was
confirmed by the production of self progeny by in-
dividually plating L4 larvae. To determine the genetic
basis of reversion to hermaphroditism, the fog-2 gene
was PCR amplified and sequenced in (i) the wild-type C.
elegans laboratory strain, N2, (ii) the fog-2 mutant strain,
and (iii) the two experimental fog-2 mutant strains that
reverted to hermaphroditism. Each of the two sex re-
versal events resulted from a gene conversion whereby
a short segment of a paralogous gene ftr-1 recombined
with the fog-2(lf) mutant allele, replacing the premature
stop codon with a tryptophan codon (Figure 1). Both
gene conversion events are relatively short, replacing at
minimum 56 and 32 nucleotides of fog-2 sequence with
ftr-1 sequence, respectively (maximum possible lengths
of the gene conversion tracts are 145 and 121 bp,
respectively). The length of these gene conversion tracts
are well within the average range of converted lengths
found between paralogs in the C. elegans genome
(Semple and Wolfe 1999) although considerably
shorter than the .200-bp conversion tracts detected
in an assay of DNA double-strand break repair employ-
ing an extrachromosomal DNA template (Plasterk

and Groenen 1992).
A comparison of fog-2 and ftr-1 found signatures of

past gene conversion in their evolution. Although the
overall sequence divergence between fog-2 and ftr-1 over
their homologous coding regions is 16%, a few large
segments are completely identical between the two
genes. Using Geneconv, a software that employs statis-
tical tests to detect gene conversion, we found three
statistically significant regions (P-values ¼ 0.0000,
0.0021, and 0.0415) ranging from 39 to 75 nucleotides
in length that are identical between fog-2 and ftr-1

(Sawyer 1999). However, the directionality of these
past gene conversion events is unknown, with the pos-
sibility that either ftr-1 or fog-2 sequence tracts have
served as the donor sequence.

Our sample size is clearly too small to draw any de-
finitive conclusions about the relative rates of point
mutations and gene conversion in the C. elegans ge-
nome. One of the gene conversion events occurred
during msh-2 knockdown by RNAi, which might be
expected to increase the rates of gene conversion.
Conversely, it is also expected to increase the nucleo-
tide substitution rate and hence the rate at which fog-2
reverts to wild type by point mutation. However, the
fact that we found gene conversion events and no di-
rect reversion to wild type by point mutation suggests
that gene conversion is at least as common in the C.
elegans genome as point mutations, if not more fre-
quent. The genomic proximity of the ftr-1 and fog-2 loci
(Figure 2) may also facilitate a high frequency of gene
conversion between them. Indeed, studies of gene con-
version events in both C. elegans (Semple and Wolfe

1999) and yeast (Drouin 2002) have found a negative
correlation between the frequency of gene conversion
events and the distance between gene pairs (unlinked
vs. linked genes). Finally, the chromosomal location of
fog-2 and ftr-1 may further enhance the rate of gene
conversion. Both genes reside close to the right end of
chromosome V. Chromosomal arms in C. elegans are
known to have higher recombination rates relative to
the center (Barnes et al. 1995; Hillier et al. 2007) and
crossing over increases the probability of gene conver-
sion ( Jeffreys and May 2004).

These gene conversion events during experimental
evolution in the laboratory raise the question whether
similar events (i.e., gene conversion between fog-2 and
members of the ftr family) are important in nature. Most

Figure 1.—Nucleotide sequence alignments representing two independent gene conversion events at the fog-2 locus by ftr-1
resulting in a switch from obligate outcrossing to hermaphroditism in two fog-2(lf ) mutant lines. In-frame nucleotide positions
200–499 of exon 3 (total length 640 bp) are displayed. The small, clear box displays the nonsense mutation G / A in the
fog-2(lf )q71 allele resulting in a nonfunctional gene relative to the wild type. The larger shaded boxed area represents the min-
imum gene conversion tracts by the upstream ftr-1 locus in sex-revertants 1 and 2. Indels are indicated by dashed lines and dots
represent identical nucleotides to the fog-2 wild-type sequence.
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Caenorhabditis species are obligate outcrossers and it is
tempting to speculate that in some environments where
outcrossing is favored, a loss-of-function mutation in
fog-2 could be advantageous in C. elegans. A high rate of
gene conversion would make such loss-of-function mu-
tations more reversible than by point mutations alone.
However, this is unlikely to have been important in the
recent evolutionary history of C. elegans. Despite the fact
that male sperm readily overwhelms hermaphroditic
sperm in the event of a male-hermaphrodite mating,
fog-2 mutants are at a severe disadvantage in mixed
populations of the two (Chasnov and Chow 2002;
Stewart and Phillips 2002), even under experimental
conditions imposing a high mutational load when
outcrossing may be more beneficial (Cutter 2005;
Manoel et al. 2007). Moreover, mating behavior in C.
elegans appears to have degenerated relative to other
obligate outcrossers in the genus, such as C. remanei and
Caenorhabditis spp. 4 (Rene Garcia et al. 2007). None-
theless, gene conversion between ftr-1 and fog-2 has the
potential to shape genetic variation at these loci in
natural populations, thereby modifying the number of
sperm produced by hermaphrodites with important
implications for the degree of inbreeding vs. outcross-
ing in nature.
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