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ABSTRACT

Association mapping (i.e., linkage disequilibrium mapping) is a powerful tool for positional cloning of
disease genes. We propose a kernel-based association test (KBAT), which is a composite function of ‘‘P-
values of single-locus association tests’’ and ‘‘kernel weights related to intermarker distances and/or linkage
disequilibria.’’ The KBAT is a general form of some current test statistics. This method can be applied to the
study of candidate genes and can scan each chromosome using a moving average procedure. We evaluated
the performance of the KBAT through simulation studies that considered evolutionary parameters, disease
models, sample sizes, kernel functions, test statistics, window attributes, empirical P-value estimations, and
genetic/physical maps. The results showed that the KBAT had a well-controlled false positive rate and high
power compared to existing methods. In addition, the KBAT was also applied to analyze a genomewide data
set from the Collaborative Study on the Genetics of Alcoholism. Important genes associated with alcoholism
dependence were identified. In summary, the merits of the KBAT are multifold: the KBAT is robust against
the inclusion of nuisance markers, is invariant to the map scale, and accommodates different types of
genomic data, study designs, and study purposes. The proposed methods are packaged in the user-friendly
software, KBAT, available at http://www.stat.sinica.edu.tw/hsinchou/genetics/association/KBAT.htm.

ASSOCIATION study has been broadly imple-
mented to identify disease susceptibility genes

related to complex disorders (Cardon and Bell 2001;
Hirschhorn and Daly 2005; Wang et al. 2005; Laird

and Lange 2006). Several historical milestones of gene
mapping that have used association studies include the
identifications of the association between late-onset
Alzheimer’s disease and the APOE-4 allele on 19q13.2
(Corder et al. 1993) and the association between
Crohn’s disease and NOD2 on 16q21 (Hugot et al.
2001). With the completion of international genetic/
genomic projects, such as the Human Genome Project
(International Human Genome Mapping Consor-

tium 2001), the HapMap Project (International

HapMap Consortium 2003), and the ENCODE Pro-
ject (Encode Project Consortium 2004), a large
number of SNP markers across the human genome
have become available for gene association studies. In
addition, new SNP array technologies have blossomed
(Matsuzaki et al. 2004; Steemers and Gunderson

2007). A great reduction in the cost of genotyping and
an increase in the number of genetic markers make
genomewide association scans more feasible and
efficient. These recent advances have improved the
power and resolution of association mapping, thereby
providing exquisite genetic dissection of complex

disorders and greatly contributing to drug discovery
(Wellcome Trust Case Control Consortium 2007).

A key factor in a successful association study is the
choice of association tests. Association tests can be
divided into single-locus and multilocus tests, according
to the number of marker loci involved in a test statistic.
Single-locus association tests emphasize marginal ef-
fects and are most suitable for studying a locus with a
strong main effect on disease manifestation, where the
study locus may be causal or highly correlated (indirect
association) to genes responsible for disease. Linkage
disequilibrium, which reflects allelic association among
different loci, plays an important role in indirect
mapping. Linkage disequilibrium decays due to chro-
mosomal recombination in meiosis between generations,
and hence it exists only within a small chromosome
region after many generations in an outbred popula-
tion. Consequently, association mapping (i.e., linkage
disequilibrium mapping) is highly accurate for posi-
tional cloning of disease-related genes.

In recent years, multilocus association tests have
gained widestream use for association studies identify-
ing disease susceptibility genes related to complex dis-
orders (Hoh and Ott 2003). Multiple genes may be
simultaneously involved in a same-disease pathway and
act in concert to confer a higher risk of disease. For one
thing, multilocus susceptibility models are competent
for detection of marginal effects unless a flip-flop phe-
nomenon occurs (Zaykin and Shibata 2008). For
another, a multilocus association test provides more
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information regarding the disease-related gene region
and potentially increases the statistical power for gene
localization compared with a single-locus inference.
The reasons justify the use of multilocus association
analyses.

The main multilocus association analyses consist of
haplotype inference (Schaid et al. 2002; Zaykin et al.
2002a; Chen and Kao 2006), genotype partition/com-
bination ½combinatorial partitioning method (CPM)
(Nelson et al. 2001) and multifactor dimensonality
reduction (MDR) (Ritchie et al. 2001)�, statistic com-
bination tests (Hoh et al. 2001; Hoh and Ott 2003;
Wille et al. 2003; Sun et al. 2006), and P-value com-
binations (Zaykin et al. 2002b; Dudbridge and Koele-

man 2003; Yang et al. 2006). Each of these methods has
its respective strengths and has proven practical in
certain applications. This article focuses on P-value com-
binations due to two reasons. First, they reflect our
research interests. Second, P-value combination has sev-
eral merits (Zaykin et al. 2002b and discussion and

conclusion in this article).
P-value combinations originated with Fisher’s prod-

uct P-value method, equivalent to the sum of log scale of
P-values (Fisher 1925). Later, other P-value combina-
tion methods were developed (Tippett 1931; Stouffer

et al. 1949; Edgington 1972). P-values were assumed to
be independent in these methods for the convenience
of theoretical development; however, this assumption is
too stringent for use in many practical applications, such
as candidate gene or genomewide association scans
using dense SNP markers. Different computational algo-
rithms have been developed to circumvent the difficulty
in deviation of null distributions with dependent P-
values, such as permutation, bootstrap, and Monte Carlo
(Manly 1998). P-value combination methods have been
broadly applied to different fields, such as meta-analysis
of linkage mapping (Guerra et al. 1999) and microarray
gene expression analysis (Hess and Iyer 2007). Re-
cently, these methods have been extended to associa-
tion mapping (Zaykin et al. 2002b; Dudbridge and
Koeleman 2003; Yang et al. 2006). Some P-value
combination methods have been incorporated into
popular analysis packages, such as SAS/Genetics ver-
sion 9.1.3 (Sas Institute 2005).

Although many P-value combination methods have
been developed, few incorporate intermarker distances
into the algorithm. Two methods were developed to
account for intermarker distances, i.e., random inter-
marker distances and constant intermarker distances.
For random distances, mutation processes were formu-
lated by a compound Poisson process, and intermarker
distances were assumed to follow an identical exponen-
tial distribution independently (Sun et al. 2006). The
study found that the Fisher’s product P-value method
could identify disease gene regions, but the regions
were larger than that identified by their scan method.
For constant distances, intermarker distances were for-

mulated as fixed constants and served as weights for P-
values on different marker loci (Yang et al. 2006). The
results showed that the Fisher’s product P-value method
may lose in power and/or increase in false positive rate
when nuisance markers were included in the analysis.
This article focuses on the model of constant inter-
marker distances that do not assume a specific un-
derlying distribution for intermarker distances. The
purpose of this article is to propose a new P-value
combination method for efficient multilocus associa-
tion scans and to examine this method using large-scale
simulation studies and real data analyses.

METHOD

A two-stage procedure: We introduce a two-stage
association mapping strategy to locate genes that in-
fluence susceptibility to a complex trait or disorder.
Consider a study region ½0, T � that contains M SNP
markers at positions L ¼ fL1 , L2 , � � � , LM�1 , LM ;
L1 ¼ 0; LM ¼ Tg. In the first stage, M single-locus
association tests for null hypotheses ‘‘H0i: the ith SNP
is not associated with the study disease, i ¼ 1; � � � ;M ’’
are performed, and the observed significance probabil-
ities are summarized in a series of P-values, P ¼ fpi ;
i ¼ 1; � � � ; Mg. For instance, allele- and trend-based
association tests can be considered for unrelated case–
control studies under Hardy–Weinberg equilibrium and
disequilibrium, respectively (Sasieni 1997). Family-
based association tests (FBATs) (Rabinowitz and
Laird 2000; Horvath et al. 2001) can be performed
for family-based case–control and quantitative trait
mapping studies.

In the second stage, a multilocus association test
combining neighboring P-values in sequence P is con-
structed. The study region ½0, T � is scanned using a
moving average procedure from the starting SNP at
position 0 to the end SNP at position T. The procedure is
described as follows. Let an anchor denote a chromo-
somal position of interest. Given a bandwidth h and an
anchor locus t, a window W ðt; hÞ is constructed by
choosing all SNPs ½i.e., W ðt; hÞ ¼ fi : Li 2 ½t � h; t 1 h�;
pi # 1g� or potential SNPs ½i.e., W ðt; hÞ ¼ fi : Li 2
½t � h; t 1 h�; pi # ug� within the chromosome region
½t � h, t 1 h� for 0 # t # T and h . 0, where constant u

denotes a truncation threshold where P-values greater
than the threshold are removed from the window. If all
P-values in a window are .u, the window is removed
from subsequent analyses. The entire study region is
partitioned into contiguous windows by shifting the
anchors from the beginning to the end of the study
region. The moving windows have a fixed window
length (i.e., 2h) except when an anchor is close to the
boundary of the study region. Different windows prob-
ably contain various numbers of SNPs.

Within each window, we perform a kernel-based
association test (KBAT). Given a bandwidth, h, and an
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anchor at position t, the test statistic for window W ðt; hÞ
is written as follows:

Gt;h ¼
X

i2W ðt;hÞ
ðai 3 lnðpiÞÞ; ð1Þ

where

ai ¼
(Kððt � t iÞ=hÞ)P

j2W ðt;hÞ (Kððt � t jÞ=hÞ) ð2Þ

denotes kernel weight for the ith P-value within window
W ðt; hÞ, and function Kð�Þ denotes a kernel density
satisfying three properties: (1) unimode, (2) symmetry,
and (3) integration to one. Three frequently used ker-
nel density functions, Epanechnikov kernel (KðvÞ¼
3
4ð1�v2Þ;�1#v #1), triangular kernel (KðvÞ¼ð1�jvjÞ;
�1#v #1), and quartic kernel (KðvÞ¼ 15

16ð1�v2Þ2;
�1#v #1), were considered in our simulation study.
The KBAT elaborated in Equation 1 is constructed under
a multiplicative P-value model (Fisher 1925; Zaykin et al.
2002b). Other models, e.g., an additive P-value model, can
also be considered. Association between a putative disease
locus and an anchor locus is sequentially scanned by
shifting the anchor, which is the center of a window, from
the start to the end of the study region. The KBAT
emphasizes a ‘‘local effect,’’ where higher weights are
assigned to single-locus P-values of markers closer to the
anchor. Effects of remote marker loci are negligible. This
feature pertains to kernel function and kernel weights as
mentioned before. Such a local effect is suitable for
describing the pattern of linkage disequilibrium, which
decays due to historical meiosis recombination.

Sampling distributions of the KBAT statistic and its
special cases: The sampling distribution of the KBAT
statistic should be derived for testing disease associa-
tion. We first discuss the scenario where all P-values
within a window are independent. Let #ðW ðt; hÞÞ de-
note the number of P-values within window W ðt; hÞ,
fp1; � � � ; p#ðW ðt;hÞÞg represents the corresponding P-
values, and fa1; � � � ; a#ðW ðt;hÞÞg represents the kernel
weights. Under the null hypothesis of no association,
all P-values follow a uniform distribution.

The KBAT statistic elaborated in Equation 1 is a
general form of the single-locus P-value statistic and the
log function of the product P-value statistics. If a kernel
function having a single-point mass on an anchor is
adopted, then the KBAT statistic reduces to the single-
locus P-value statistic. If a rectangle kernel function is
adopted and the P-value truncation procedure is not
considered (i.e., u ¼ 1), then the KBAT statistic reduces
to the Fisher’s product P-value statistic (Fisher 1925).
The commonly used formula, i.e., minus twice the log
function of the product P-value statistic, follows a chi-
square distribution with a degree of freedom of
2 3 #ðW ðt; hÞÞ under the null hypothesis. If a rectangle
kernel function is adopted and the P-value truncation
procedure is considered (i.e., u , 1), then the KBAT

statistic reduces to the Zaykin’s truncated product P-
value statistic whose null distribution has been de-
scribed previously (Zaykin et al. 2002b). If other kernel
functions are used and the P-value truncation pro-
cedure is not considered, then the KBAT statistic re-
duces to the weighted product P-value statistic and its
null distribution has been described previously (Good

1955).
If P-values within a window are statistically dependent,

the exact null distribution becomes intractable and
relies on the correlation structure of P-values. Monte
Carlo (Zaykin et al. 2002b), permutation (Churchill

and Doerge 1994; Doerge and Churchill 1996;
Dudbridge and Koeleman 2003), and direct simula-
tion methods (Lin 2005; Seaman and Müller-Myhsok

2005) have been proposed to generate the null distri-
bution. All of these algorithms can be applied to yield a
null distribution of the KBAT with slight modifications.
In this article, we capitalized on the Zaykin’s Monte
Carlo procedure by applying a five-step algorithm as
follows: (1) a correlation matrix was established to de-
fine the relationship among P-values; (2) dependent P-
values mimicking the original P-values in the real data
were generated; (3) the KBAT statistic was recalculated
on the basis of each of the Monte Carlo samples; (4) the
empirical distribution of the KBAT statistic was con-
structed; and (5) the empirical P-value was calculated.
For the details in each step refer to Yang et al. (2006).

SIMULATION

Simulation conditions: Using simulations, we evalu-
ated the performance of the KBAT under different
conditions. Dichotomous phenotype data (affected case
and unaffected control) and SNP genotype data (1/1,
1/0, and 0/0) were generated using HAPSIM software
(Curtis et al. 2001). The details of the simulation
algorithms are listed in the HAPSIM user manuals.
Our simulations considered several parameters/factors
including (1) evolutionary parameters (recombination
and mutation age); (2) disease models ½disease allele
frequency (DAF) and penetrance vector (PV)� and
sample sizes; (3) kernel functions (Epanechnikov, tri-
angular, and quartic kernels); (4) test statistics ½single-
locus method, product P-value method (Fisher 1925),
truncated product P-value method (Zaykin et al. 2002b),
minimum P-value method (Tippett 1931), weighted
product P-value method (Yang et al. 2006) and KBATs�;
(5) bandwidths and windows (fixed window and moving
windows); (6) empirical P-value estimations (Monte
Carlo procedure and permutation procedure); and
(7) genetic/physical maps (base pairs, centimorgans,
morgans, and recombination fraction). In the simula-
tion study, we generated S simulation samples (S ¼
1000) under each simulation condition. In each simu-
lation sample, a chi-square test statistic was calculated
for the single-locus association test in the first stage on
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the basis of genotype data, and the resulting P-values
were used for multilocus association tests in the second
stage. Given the P-values from raw data, we calculated
correlation matrices of P-values. Then we generated
dependent P-values mimicking the original P-values for
C times (C¼ 10,000). In each sequence of dependent P-
values, all test statistics were recalculated. Then the
empirical distribution of each test statistic was con-
structed and the empirical P-value was calculated on the
basis of the C Monte Carlo samples. The procedure was
applied to all S simulation samples. On the basis of the
obtained empirical P-values, we calculated the false pos-
itive rate for models without disease genes, and we cal-
culated the power in models containing disease genes.

Evolutionary parameters: We examined the perfor-
mance of the KBAT using an Epanechnikov kernel
under different recombination fractions and mutation
ages, which affected the evolutionary process of the
disease gene of study. Two recombination fractions were
considered: (1) SU-1 and (2) SU-5. Among 31 diallelic
markers in the study region, the recombination fraction
SU-1 contained 3 middle markers and SU-5 contained
11 middle markers that are highly linked to the true
disease locus; the remaining SNPs were not linked to the
disease locus (Yang et al. 2006). Two mutation ages were
considered: (1) recent polymorphism and (2) historic

polymorphism. The first condition considered the
number of generations before and after the disease
mutation to be 10 and 10, respectively; the second con-
dition considered the number of generations before
and after the disease mutation to be 200 and 10, re-
spectively. In the simulation of power study, the (un-
observable) disease locus was set close to the center of
the study region with 31 markers. For both the affected
cases and unaffected controls, the sample size was Na ¼
Nu¼ 1000. The frequency of disease allele D was DAF ¼
0.1, and the penetrance vector for genotypes dd, Dd, and
DD was PV ¼ (0.1, 0.3, 0.4), respectively. Bandwidths
were assigned on the basis of window sizes of 3, 11, 21,
and 31.

The results in Figure 1A demonstrate that the re-
combination fraction had a large effect on the power of
the KBAT, but the effect of mutation ages was relatively
low. Under the SU-1 recombination fraction containing
3 markers linked to the true disease locus, the power was
between 0.42 and 0.45; under the scenario of SU-5
containing 11 markers linked to the true disease locus,
the power increased from 0.47 to�0.75 when data from
all informative markers were capitalized in the KBAT.
The effects of window size and bandwidth will be
discussed later. The recombination fraction and muta-
tion ages slightly affected the false positive rate of the

Figure 1.—Evaluation of effects of evolutionary/genetic/other factors on the KBAT. (A) Effects of recombination fraction and
mutation age. (B) Effects of disease model and sample size. (C) Effect of kernel function.
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KBAT, but all false positive rates were controlled
between 0.03 and 0.08.

Disease model and sample size: Two sample sizes
were considered: (1) 500 cases and 500 controls and (2)
1000 cases and 1000 controls. Four disease models were
considered: (1) high penetrance model with PV ¼ (0,
0.7, 0.7) and DAF ¼ 0.001, (2) modest penetrance
model with PV ¼ (0.1, 0.3, 0.4) and DAF ¼ 0.1, (3)
modest penetrance model with PV ¼ (0.1, 0.3, 0.4) and
DAF ¼ 0.25, and (4) low penetrance model with PV ¼
(0.005, 0.005, 0.03) and DAF ¼ 0.25.

The results in Figure 1B demonstrate that the power
increased when sample size or penetrance increased.
Although the pattern was not surprising, the values of
increased power allow for practical study designs. Under
the four disease models, the percentage of power
gained due to doubling the sample size was 2, 35, 40,
and 55%, respectively. Under the same PV (disease
models 2 and 3), KBAT had higher power for a dis-
ease model with a higher DAF. Under the same DAF
(disease models 2 and 3), KBAT had higher power for a
disease model with a higher PV.

Without additional descriptions regarding simulation
conditions for the subsequent simulation studies, we
describe results from the simulation studies, which
generated 31 diallelic markers for 1000 cases and 1000
controls under the SU-1 recombination fraction. The
number of generations before and after the disease
mutation was 10. A disease model of PV¼ (0.1, 0.3, 0.4)
and DAF ¼ 0.1, which had the lowest power among the
four previously considered disease models, was dis-
cussed. Analyses for other evolutionary/disease models
were also performed but results are not shown.

Kernel functions: We evaluated the impact of kernel
functions on the KBAT. Three frequently used kernel
density functions were considered: (1) Epanechnikov

kernel, (2) triangular kernel, and (3) quartic kernel. All
simulation results in Figure 1C show that the power and
false positive rates for different kernel functions were
consistent. The power for different kernel functions was
0.42, and the false positive rate was 0.03. Therefore,
kernel functions have no or only a limited effect on the
KBAT. In subsequent simulations, we show only results
of the KBAT using an Epanechnikov kernel, which is
optimal for density estimation (Epanechnikov 1969).

Test statistics: We compared the KBAT with existing
methods including the single-locus method (SLM), the
minimum P-value method (MPM) (Tippett 1931), the
product P-value method (PPM) (Fisher 1925), the trun-
cated product P-value method (TPPM) (Zaykin et al.
2002b), and the weighted product P-value method
(WPPM) (Yang et al. 2006). Four bandwidths were
assigned corresponding to window sizes of 3, 11, 21,
and 31. The results in Figure 2, A and B, show simulation
results of test statistics with different bandwidths/win-
dow sizes. Results of test statistics without P-value trunca-
tion are shown in Figure 2A; results of test statistics with
P-value truncation are shown in Figure 2B.

In general, test statistics KBAT and WPPM had the
highest power, and SLM had the lowest power. Except
for PPM, the test statistics controlled false positive rates
well. The increase of the false positive rate of PPM
should be caused by the interference of nuisance
markers. Because inclusion of nuisance markers is
sometimes unavoidable in practical gene mapping
studies, it is worth discussing the impact of nuisance
markers on the test statistics. This simulation study
focused on the SU-1 recombination fraction, which
contained only the three middle markers linked to the
true disease locus. Consequently, the three middle mark-
ers were informative, and the others were considered
nuisance. Simulation results showed that the power of

Figure 2.—Comparison of false positive rates
and power of different association tests under dif-
ferent bandwidths. (A) Rejection probability of
test statistics without P-value truncation. (B) Re-
jection probability of test statistics with a P-value
truncation threshold of 0.05.
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MPM, PPM, and TPPM was reduced dramatically when
nuisance markers were included. The weighted statistics
(KBAT and WPPM) properly adjusted the interference
of nuisance markers and maintained the power. Inclu-
sion of nuisance markers also resulted in the inflation of
false positive rate of PPM. The P-value truncation pro-
cedure suggested by Zaykin et al. (2002b) significantly
improved inflation of false positive rate, whereas the
truncation slightly reduced the power. The weighting
procedures recommended in Yang et al. (2006) and in
this article also controlled false positive rate well. In
summary, KBAT and WPPM had the best performance
in both power and false positive rate, i.e., the two test
statistics were invariant to the inclusion of nuisance
markers.

Bandwidths and windows: First, we examined the case
where the anchor marker was fixed at the center of study
markers (scenario of a fixed window). We specified four
bandwidths corresponding to window sizes of 3, 11, 21,
and 31. Simulation results are shown in Figure 2, A and
B. In general, the KBAT and the WPPM performed well
with regard to power and false positive rate even
although a nonoptimal bandwidth or window size was
used (the optimal window size was 3 in this case). MPM,
PPM, and TPPM were comparable to KBAT and WPPM
when the optimal window size was considered, but the

power was dramatically reduced when the incorrect
window size was adopted.

We further evaluated the performance of the KBAT
using moving anchors (scenario of moving windows).
We generated 11 SNP markers in the study region for
1000 cases and 1000 controls under the SU-1 recombi-
nation fraction. A true disease locus was located close
to one of the following five loci: (1) the starting lo-
cus SNP1, (2) the second locus SNP2, (3) the sixth locus
SNP6, (4) the tenth locus SNP10, and (5) the last locus
SNP11. A ‘‘disease-related region’’ was constructed using
markers associated with the true disease locus. There-
fore, the disease-related regions under SU-1 were
constructed by {SNP1, SNP2}, {SNP1, SNP2, SNP3},
{SNP5, SNP6, SNP7}, {SNP9, SNP10, SNP11}, and {SNP10,
SNP11} when the true disease locus was close to the five
loci: SNP1, SNP2, SNP6, SNP10, and SNP11, respectively.
Two bandwidths (h ¼ 25,000.00001 bp and h ¼
50,000.000045 bp) were considered. For each true
disease location and for each of the two bandwidths,
rejection probabilities of three test statistics (SLM,
TPPM, and KBAT) with a P-value truncation threshold
of 0.05 were calculated sequentially from the first
marker locus SNP1 to the last marker locus SNP11.
Results are shown in Figure 3, where the vertical axis
denotes rejection probability. The location of a true

Figure 3.—Comparison
of rejection probabilities
of the SLM, the TPPM,
and the KBAT. In each
graph, the horizontal axis
denotes SNP locus and the
vertical axis denotes rejec-
tion probability. Two
graphs in each row show re-
sults for two different band-
widths (h ¼ 25,000.00001
bp and h ¼ 50,000.000045
bp), given the same loca-
tion of the true disease
gene; 5 graphs in each col-
umn show results for five lo-
cations of the true disease
gene, given a bandwidth.
The location of a true dis-
ease locus is signified by a
blue inverted triangle.
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disease locus is signified by a blue inverted triangle. The
rejection probability signifies power at a SNP marker if
the SNP is located within the disease-related region; the
rejection probability signifies a false positive rate at a
SNP marker if the SNP is located outside the disease-
related region.

Results showed that the KBAT improved power of the
SLM due to incorporation of multilocus information
and improved false positive rate of the TPPM resulting
from integration of proper marker weights. The im-
provement of false positive rate can also be explained as
an improvement in the resolution of association map-
ping, where the KBAT reliably identified the region
linked to the true disease locus as well as accurately
determined the width of the disease gene region. In
addition, we examined whether the location of a true
disease locus affected performance of the proposed
methods. When an anchor is close to the boundary of
the study region, the corresponding window has an
imbalanced number of markers on both sides of the
anchor marker. If the power and false positive rate are
not influenced by an imbalanced number of markers,
we label this property as an ‘‘immunity of boundary
effect.’’ Figure 3 shows that the KBAT satisfied this
property. These advantages justify the application of the
KBAT to association scans.

Empirical P-value estimations: We compared the two
methods of empirical P-value calculation, Monte Carlo
procedure (Zaykin et al. 2002b) and permutation pro-
cedure (Churchill and Doerge 1994; Doerge and
Churchill 1996). A disease model of PV ¼ (0.1, 0.3,
0.4) and DAF ¼ 0.25 was discussed. Four bandwidths
were assigned corresponding to window sizes of 3, 11,
21, and 31. KBAT statistics without P-value truncation
(u ¼ 1) and with P-value truncation (u ¼ 0:05) were

calculated. The total number of simulations was S ¼
1000. In each simulation, empirical P-values were cal-
culated by using the Monte Carlo procedure and
permutation procedure, respectively, where the number
of Monte Carlo replications was C ¼ 10,000 and the
number of permutation replications was R ¼ 10,000.
The power and false positive rate of the KBAT with/
without P-value truncation were calculated under dif-
ferent bandwidths. Simulation results of test statistics
without P-value truncation are shown in Figure 4A;
results of test statistics with P-value truncation are shown
in Figure 4B. Results showed that the power and false
positive rates from the Monte Carlo procedure and
permutation procedure were close. The differences of
power of the two procedures across different truncation
thresholds and bandwidths were smaller than 0.02; the
differences of false positive rates of the two procedures
across different truncation thresholds and bandwidths
were smaller than 0.03. Two methods of empirical P-
value calculation produced the consistent results, sug-
gesting that the calculation of empirical P-value of the
KBAT was reliable.

Genetic/physical maps: We examined whether dif-
ferent maps and scales influence the weights used in the
KBAT and the WPPM, and therefore, the performance
in disease gene mapping. Results showed that weights of
the KBAT were not affected by the map scale (Figure
5A), but the weights of the WPPM were affected (Figure
5B). In other words, the KBAT is scale invariant. We also
compared the effect of map scale on false positive rates
and power of the KBAT and the WPPM. The results are
shown in Figure 5C. Because of an invariance to map
scale, the false positive rate and power of the KBAT
remained constant for different map scales. However,
the WPPM was affected greatly. When base pair (bp) was

Figure 4.—Comparison of false positive
rates and power of KBATs, which used
Monte Carlo procedure and permutation
procedure for empirical P-value estima-
tion, under different bandwidths. (A) Re-
jection probability of the KBAT without
P-value truncation. (B) Rejection probabil-
ity of the KBAT with a P-value truncation
threshold of 0.05.
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used as the distance scale, the WPPM assigned almost all
weight to the anchor marker. Under these circum-
stances, the WPPM was equivalent to the SLM where
the power was reduced while false positive rate was min-
imized. When recombination fraction (RF) was used,
all markers in the window had approximately equal
weights. The WPPM, therefore, was approximately equiv-
alent to the PPM. The power decreased and false positive
rate increased when nuisance markers were included, i.e.,
when the number of included markers was .3. When
centimorgan (cM) and morgan (M) were used, the KBAT
and the WPPM performed similarly. The results showed
that the KBAT was invariant to the map scale.

REAL DATA ANALYSIS

Alcoholism dependence ½Online Mendelian Inheri-
tance in Man (OMIM) no. 103780� is a polygenic and
multifactorial disorder characterized by an alcohol
craving, alcohol tolerance, and/or aggressive and anti-
social behavior. In this study, we analyzed the data from
The Collaborative Study on the Genetics of Alcoholism
(COGA) provided by Genetic Analysis Workshop 14
(GAW14) (Bailey-Wilson et al. 2005; Edenberg et al.

2005) to illustrate our proposed method. In this study,
patients with an alcohol dependency were diagnosed
using the DSM-III-R and Feighner criteria. This study
collected 143 pedigrees with 1614 samples in total,
which corresponded to 643 patients, 285 pure un-
affected individuals, and 686 others (‘‘others’’ contain
unknown, never drank, and unaffected with some
symptoms). Samples who met the diagnostic criteria of
alcohol dependency were treated as affected individuals
(cases). The remaining samples were treated as un-
affected individuals (controls). Genotyping was per-
formed with the Affymetrix GeneChip Mapping 10K
Array (11,560 SNPs) and Illumina Linkage III Panel
(4763 SNPs). Our analysis capitalized only on the SNPs
in the former platform, having an average intermarker
distance of 210 kb, because the former platform pro-
vided a larger number of SNP markers. Of 11,120 SNPs
on 22 autosomes, 1497 SNPs violating Hardy–Weinberg
equilibrium were excluded from our analysis.

In our analysis, FBATs (Rabinowitz and Laird 2000;
Horvath et al. 2001) were conducted to test the
null hypothesis of no association in the first stage. False
discovery rates (FDR) (Benjamini and Hochberg

1995) of the FBAT are shown in Figure 6 (black dashed

Figure 5.—Evaluation of the effects of different weighting procedures. (A) Weight values of the proposed kernel-based weighting
procedure. (B) Weight values of the distance-based weight procedure (Yang et al. 2006). (C) Rejection probabilities of the KBAT
and the WPPM under different distance scales (M, morgan; cM, centimorgan; bp, base pair; and RF, recombination fraction).

1064 H.-C. Yang, H.-Y. Hsieh and C. S. J. Fann
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/179/2/1057/6064732 by guest on 25 April 2024



line). Results showed that the genomewide single-locus
FBAT identified five significant SNPs with FDR ,

0.05 (tsc0055322 and tsc0559236 on chromosome 1,
tsc0564670 on chromosome 5, tsc0483523 on chromo-
some 6, and tsc0325449 on chromosome 14). In ad-
dition to the single-locus FBAT, we also calculated the
multilocus KBAT with bandwidths covering 5, 10, and
20 SNPs on an average on the basis of P-values of the
genomewide single-locus FBAT. FDR was applied to the
empirical P-values of the KBAT to consider a multiple-
test comparison. In this scenario, the regions located by
KBATs with the three bandwidths were similar. There-
fore, only results based on the bandwidth covering five
SNPs on average are shown in Figure 6 (blue solid line).
Results showed that all SNPs identified by the genome-
wide single-locus FBAT were also captured by the KBAT.
Nevertheless, the KBAT further identified additional
loci over the single-locus FBAT. The genomewide multi-

locus KBAT identified 24 significant SNPs on chromo-
somes 1, 2, 3, 5, 6, 7, 14, and 18, where the highest
�log10(FDR) on these eight chromosomes were 2.34,
1.62, 1.42, 3.51, 2.90, 1.42, 1.40, and 1.40, respectively.
SNPs identified by at least one of three KBATs with
different bandwidths are summarized in supplemental
Table 1.

Our analyses confirmed findings in previous genome-
wide linkage mapping (Hill et al. 2004; Yang et al.
2005a). Our identified strong association signals on
chromosomes 1 and 6 were close to the regions mapped
by the previous studies (Edenberg et al. 2004; Lappa-

lainen et al. 2004). The highest peak on chromosome 1
was close to the alcoholism gene region between
D1S2779 (126.16 cM) and D1S1170 (128.73 cM) iden-
tified by Lappalainen et al. (2004). The highest peak on
chromosome 6 was close to the human major histocom-
patibility complex region that covers important alco-

Figure 6.—Genome-wide association scans of alcoholism data. The horizontal axis is the genetic distance in centimorgans. The
vertical axis is the false discovery rate (FDR) of the FBAT in �log10. The red reference line denotes the significance threshold of
�log10(FDR) ¼ 1.30, i.e., FDR ¼ 0.05. The black dashed line represents �log10 (FDR) of the single-locus FBAT and the blue solid
line denotes �log10(FDR) of the multilocus KBAT.
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holism genes, such as GABRA2 (Edenberg et al. 2004).
In addition, KBATs also identified chromosome regions
that were neither found by the single-locus FBAT nor
reported by other studies. More investigation of bi-
ological function and disease etiology of these regions
with strong association signals, such as gene regions of
FMNL2 (2q23.3), LIMD1 (3p21.3), DDC (7p11), and
WDR7 (18q21.1-q22), and regions of 22.0 cM and 49.8–
50.0 cM on chromosome 5, is needed.

SOFTWARE

KBAT software was developed on the basis of lan-
guage R and a user-friendly interface based on R-GUI
(See Figure 7). Programs, several illustrated data
sets, and a user guide are available at the KBAT web
site http://www.stat.sinica.edu.tw/hsinchou/genetics/
association/KBAT.htm. Before using KBAT software,
it is suggested that users read the user guide for software
installation/initialization, function/operation, and for-
mat of input/output data.

DISCUSSION AND CONCLUSION

This article proposes a nonparametric kernel-based
association test. The performance of the proposed
methods was examined by simulation studies and a ge-
nomewide association study. Simulation results showed
that the KBAT performs well with regard to power and

false positive rate. In addition, the developed software,
KBAT, provides a useful tool for users to analyze their
data. In summary, the KBAT is simple in concept and has
several main features as follows.

First, the KBAT is scale invariant to marker distances.
The KBAT incorporates marker weights to dilute the
impact of nuisance markers and to amplify the effect of
informative markers. The marker weights in Equation 2
are a ratio of kernel function to marker distances. The
basic unit is eliminated. Consequently, kernel weights
are invariant to scale change of physical/genetic distances.

Second, the KBAT is able to infer disease association
at unassayed loci. Regardless of whether the anchor
locus of interest is assayed, a window is constructed
by symmetrically extending two regions with a length
equal to the bandwidth from the anchor. Continuous
kernel function symmetrical to the anchor locus assigns
weights to P-values within the window. If the anchor is
assayed, the highest weight is assigned to the P-value of
the anchor. If the anchor is not assayed, then the con-
tinuous kernel function provides an automatic adjust-
ment for the calculation of marker weights. In other
words, the weight at the anchor is shared by other
nearby assayed markers. Therefore, the KBAT can infer
disease association at any specific locus of interest.

Third, the KBAT can incorporate information about
the background of linkage disequilibrium. In addition
to intermarker distances, information about linkage
disequilibrium can also be utilized directly. If genotype
data are available, the coefficient of linkage disequilib-

Figure 7.—Interface of the
KBAT software.
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rium can be calculated (Morton et al. 2001; Shete

2003); otherwise, the information can be gathered from
the web site of the International HapMap Project
(http://www.hapmap.org/downloads/index.html.en).
The information can be used alone or jointly with in-
termarker distances for weight assignment in the KBAT.
This utility was also incorporated into the KBAT soft-
ware. In our simulation study, the KBAT with a joint
weight function of distance and linkage disequilibrium
performed similarly to the KBAT and the WPPM with
distance-only P-value weights.

The KBAT can also analyze different types of data
from different study designs and research purposes:

1. The KBAT can be applied to genetic association
studies without genotype data, such as pooled DNA
multilocus association tests (Sham et al. 2002; Yang

and Fann 2007). In such a study, the loss of individual
genotype information limits the capitalization of
haplotype-based or genotyped-based multilocus as-
sociation tests in such studies. The KBAT can easily
apply to perform pooled DNA multilocus association
tests by incorporating pooled DNA single-locus
association tests (Visscher and Le Hellard 2003;
Yang et al. 2005b). In addition, the KBATcan be used
for meta-analysis (Glass 1976) where only P-value
data are collected. P-value sequence data of disease
association from different sources, e.g., several stud-
ies or related publications, are merged and analyzed
by the KBAT to provide an integrated conclusion.

2. The KBAT can be applied to genetic studies with
different study designs. For example, the KBAT can
easily adapt to unrelated case–control studies, family-
based case–control studies, and quantitative trait
studies once P-values from proper single-locus asso-
ciation tests are collected.

3. The KBAT has potential for different study purposes.
In addition to disease gene association mapping, the
KBAT also has potential to identify genetic linkage
and detection of chromosomal aberrations, e.g., copy
number change and allelic imbalance.

4. The KBAT can be applied to study marker loci
violating Hardy–Weinberg equilibrium, which is the
fundamental assumption of many multilocus associ-
ation tests. The KBAT can circumvent this restriction
by choosing a proper single-locus association test that
is valid under Hardy–Weinberg disequilibrium. For
example, a trend test (Armitage 1955) for a case
control association study can be applied.

The KBAT has several other interesting qualities. The
KBAT is a Nadaraya–Watson-type statistic (Nadaraya

1964; Watson 1964) with an underlying model—the
local constant regression model. The model is a special
case of local polynomials having advantages of minimax
efficiency, absence of boundary effect, and flexible
fluctuation data fitting (Fan and Gijbels 1996). The
determination of the degree of polynomials is a trade-

off. A large degree of polynomials improves the accuracy
of curve fitting but also increases its variability and
computational time. Further investigation of the KBAT
under this extended model is worth pursuing. Addi-
tionally, the KBAT is nonparametric. This strength is
flexible in data analysis because this approach is not
restricted by specific parametric assumptions. However,
the calculation of empirical P-values may take longer
relative to parametric approaches. The computational
time required by the KBAT is reasonable, but intensive
time is demanded for a large-scale, whole genome scan.
Further refinement of an efficient computational algo-
rithm to derive null distribution is underway.

Data of alcoholism dependence analysis were provided by the
Collaborative Study on the Genetics of Alcoholism (U10AA008401).
This work was partially supported by a National Science Council grant
of Taiwan (NSC 96-2314-B-001-005) and a National Research Program
for Genomic Medicine grant of Taiwan (NSC 97-3112-B-001-027).
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