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ABSTRACT

Circadian (�24 hr) rhythms of behavior and physiology are driven by molecular clocks that are
endogenous to most organisms. The mechanisms underlying these clocks are remarkably conserved
across evolution and typically consist of auto-regulatory loops in which specific proteins (clock proteins)
rhythmically repress expression of their own genes. Such regulation maintains 24-hr cycles of RNA and
protein expression. Despite the conservation of these mechanisms, however, questions are now being
raised about the relevance of different molecular oscillations. Indeed, several studies have demonstrated
that oscillations of some critical clock genes can be eliminated without loss of basic clock function. Here,
we describe the multiple levels at which clock gene/protein expression and function can be rhythmically
regulated—transcription, protein expression, post-translational modification, and localization—and
speculate as to which aspect of this regulation is most critical. While the review is focused on Drosophila,
we include some discussion of mammalian clocks to indicate the extent to which the questions
concerning clock mechanisms are similar, regardless of the organism under study.

THE light:dark cycle generated by the earth’s
rotation is the driving force of daily behavioral

and physiological rhythms exhibited by most organ-
isms. However, these daily (�24 hr) rhythms are not just
a passive response to the light:dark cycle; instead, an
intrinsic timekeeping mechanism synchronizes physio-
logical processes to the cyclic environment. The endog-
enous timekeeper is a self-sustained oscillator, termed
the circadian clock, which can be entrained to envi-
ronmental cues such as light and temperature (such
environmental time signals are called zeitgebers), but
more importantly, it free runs in constant conditions
that lack environmental cues. In the past �20 years,
genetic analysis of circadian rhythms in model organ-
isms such as Drosophila, Neurospora, Arabidopsis, cya-
nobacteria, and mice has yielded considerable insight
into the molecular mechanisms of circadian oscillators.
Despite these advances, the question of how exactly a
rhythm is generated is getting some attention again
because a number of recent studies have challenged
the simple models proposed initially. This review traces
these developments in the field and then proposes a
revised model that incorporates the old and new
findings. While the focus is on the molecular mecha-

nisms of the Drosophila melanogaster circadian clock, ad-
vances in other circadian systems will also be discussed
to illustrate conserved mechanisms. Readers interested
in circadian clock mechanisms of other organisms are
encouraged to read recent reviews (Hastings and
Herzog 2004; Gardner et al. 2006; Ko and Takahashi

2006; Williams 2006; Woelfle and Johnson 2006;
Heintzen and Liu 2007; Levi and Schibler 2007).

THE BASIC CIRCADIAN FRAMEWORK:
THE per–tim FEEDBACK LOOP

Genetic analysis has identified four proteins in Dro-
sophila that are essential for, and largely dedicated to,
circadian clock function: CLOCK (CLK), CYCLE (CYC),
PERIOD (PER), and TIMELESS (TIM) (Konopka and
Benzer 1971; Bargiello et al. 1984; Reddy et al. 1984;
Zehring et al. 1984; Sehgal et al. 1994; Myers et al. 1995;
Allada et al. 1998; Rutila et al. 1998). The manner in
which a molecular clock is generated through the
actions of these proteins has been investigated in some
detail. During the day and early evening, CLK and CYC
form a heterodimer, which activates per and tim expres-
sion through binding to specific enhancer elements (E-
box) in their promoters (Darlington et al. 1998),
resulting in a peak of per and tim transcripts during the
early night. The PER and TIM proteins accumulate and
associate with each other (Gekakis et al. 1995; Meyer
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et al. 2006) in the late night and translocate into the
nucleus to repress the transcriptional activity of the
CLK–CYC heterodimer (Hardin 2005) (Figure 1). Re-
cent studies suggest that each of the two proteins can
enter the nucleus alone (Shafer et al. 2002); however,
nuclear TIM alone does not function as an efficient
repressor of CLK–CYC activity (Ashmore et al. 2003;
Chang and Reppert 2003). In contrast, PER alone can
repress CLK–CYC activity (Rothenfluh et al. 2000;
Chang and Reppert 2003; Nawathean and Rosbash

2004; Cyran et al. 2005), although the repression
efficiency is greatly increased when TIM is present. After
lights on, PER–TIM proteins are degraded, allowing a
new cycle of transcription to start (Figure 1). The turn-
over of PER and TIM proteins during the daytime, the
delay of their accumulation during early night, and their
nuclear translocation during the late night appears to be
crucial to maintaining the 24-hr cycle. These dynamic
cyclic processes persist in constant dark conditions.
Mammals have a similar framework, where the circadian
clock consists of CLOCK, BMAL1 (mammalian ortholog
of CYC), and PER and its partner, which is a molecule
called cryptochrome (mCRY), rather than TIM (Ko and
Takahashi 2006).

The mechanisms described above are usually syn-
chronized to light:dark cycles through the process
described below. However, they are sustained in con-
stant darkness; indeed, they can even be initiated in the

absence of light. When flies are raised under constant
dark conditions, they are able to manifest rhythmic be-
havior (Sehgal et al. 1992; Tomioka et al. 1997), al-
though individual flies are not in phase with each other.

The simplest model, then, is that rhythmic transcrip-
tion produces rhythmic RNA expression, which leads to
rhythmic protein expression. The protein, in turn, reg-
ulates transcription of its own gene, maintaining a 24-hr
loop, which drives overt rhythms. However, a number of
observations have challenged this model. Even when per
and tim mRNA are held constant, the two proteins
continue to cycle, and behavioral rhythms persist in a
significant proportion of flies (Yang and Sehgal 2001).
This contradicts the original model because the pre-
diction was that abolishing rhythmic transcription would
abolish the feedback loop, and thereby behavioral
rhythms. Thus, mechanisms other than rhythmic tran-
scription are able to maintain cyclic expression of the
core clock proteins, and it would appear that cyclic ex-
pression of the two proteins is essential for clock func-
tion. Consistent with this idea, overexpression of either
protein renders flies arrhythmic (Yang and Sehgal

2001). However, it may also be that overexpression of
the proteins prevents necessary post-translational mod-
ifications (discussed further below).

In the mammalian circadian clock, even the signifi-
cance of clock protein cycling has been questioned.
Although overexpression of mCry1 was reported to
impair molecular oscillations in cultured fibroblasts
(Ueda et al. 2005), infusion of constant levels of mCRY
into cultured cells did not disrupt the molecular clock
(Fan et al. 2007). One could argue that the overall levels
of mCRY, or its post-translational modifications, were
different in the two studies, but the latter study does
suggest that robust cycling of mCRY is not necessary for
a functional molecular oscillation, at least in the cell
system used. Thus, it appears that rhythms can be
generated in the absence of rhythmic mRNA expres-
sion, and perhaps even rhythmic protein expression, of
one or more essential clock genes. In fact, as alluded to
above, post-translational control of clock proteins is
critical, if not sufficient for generating a rhythm.

LIGHT RESPONSE OF THE CIRCADIAN CLOCK

Light is the major entraining signal for the circadian
clock. Since the clock’s response to light is based largely
upon the function of proteins introduced above, we will
discuss it here before describing other aspects of the
clock mechanism. The clock can be entrained to light by
the visual system and by nonvisual, dedicated circadian
mechanisms (Ashmore and Sehgal 2003). The dedi-
cated circadian photoreceptor in Drosophila is crypto-
chrome (CRY) (Emery et al. 1998; Stanewsky et al.
1998), ortholog of the protein that in mammals is a
component of the molecular clock. Upon light treat-
ment, CRY is activated and transmits a signal that targets

Figure 1.—Model of the Drosophila circadian clock based
on interlocking transcriptional feedback loops. CLK and CYC
form a heterodimer and bind to E-box elements of the circa-
dian clock genes per and tim and activate their transcription
during the day and early evening; as per and tim mRNAs peak,
PER and TIM proteins accumulate, form a PER–TIM com-
plex, and translocate into the nucleus to repress their own
transcription during the late night. During the day, PER
and TIM are degraded by light-dependent and independent
pathways, thus allowing a new cycle of transcription to start. In
another transcription-based loop, CLK–CYC activate tran-
scription of vri and Pdp1e; as VRI and PDP1e proteins accumu-
late, they translocate into the nucleus to inhibit and activate
Clk transcription, respectively. Both VRI and PDP1e bind to
E4BP4 sites in the Clk promoter. PDP1e accumulation lags be-
hind that of VRI, resulting in rhythmic Clk transcription.
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TIM for degradation by the proteasome (Hunter-
Ensor et al. 1996; Myers et al. 1996; Zeng et al. 1996;
Naidoo et al. 1999). Light-dependent degradation of TIM
is mediated by a specific E3 ligase protein termed JETLAG
( JET) (Koh et al. 2006). The name was derived from the
phenotype of mutant flies that fail to efficiently adjust
their circadian behavior to a shift in the light:dark sche-
dule, thus displaying extended ‘‘jetlag.’’ jetlag (jet) mutants
also have aberrent behavior in the presence of constant
light. Unlike wild-type flies that are arrhythmic in the
presence of constant light due to the constant degrada-
tion of TIM, jet flies are rhythmic under such conditions.

Although tyrosine kinase activity appears to be re-
quired for TIM degradation by light (Naidoo et al. 1999),
the specific enzyme involved has not yet been identified.
However, the serine/threonine kinase, glycogen synthese
kinase ½SHAGGY (SGG) in Drosophila�, is involved in this
process. Serotonin signaling increases SGG phosphory-
lation, thereby lowering its activity (SGG activity is
lowered by phosphorylation at the Ser9 residue), and
reduces TIM degradation by light (Yuan et al. 2005). On
the other hand, a recent study showed that increased
SGG stabilizes TIM and also reduces its response to light
(Stoleru et al. 2007). This apparent contradiction can-
not be simply explained by SGG activity toward TIM and
may involve effects of SGG on CRY (Stoleru et al. 2007).

With respect to how the effect of light on TIM resets
the clock, the association of TIM with CRY abrogates
negative feedback by PER–TIM, and the subsequent
degradation of TIM disrupts the PER–TIM complex
(Lee et al. 1996; Ceriani et al. 1999). Thus, light alters
the levels of a clock component, which resets the timing
of all other events in the cycle. Interestingly, pulses of
light delivered at night will reset the phase of the clock,
but the effect is different depending upon the time of
delivery: in the early night, a light pulse delays the clock
(resetting to dusk) while in the late night it advances the
clock (resetting to dawn). In molecular terms, a possible
explanation may be provided by the levels of tim mRNA
and the subcellular localization of PER and TIM. In the
early night, the two proteins are cytoplasmic and mRNA
levels are high and able to resynthesize the protein lost
by degradation. Thus, the clock is delayed by the number
of hours it takes to produce that amount of protein. In the
late night, the PER–TIM complex is in the nucleus, re-
pressing transcription. Thus, the protein cannot be re-
plenished and the clock moves forward to the next cycle.

POST-TRANSLATIONAL REGULATION
OF PER AND TIM

As may be evident from the description of the light
response above, post-translational mechanisms are crit-
ical for the entrainment of the clock to light. Likewise,
free-running clock function relies upon regulated post-
translational events, even when per and tim mRNA are
expressed with a robust rhythm. PER stability is regu-

lated by phosphorylation carried out largely by a casein
kinase I gene called doubletime (dbt). Mutations in dbt
result in long or short period or arrhythmia, depending
on the specific molecular lesion (Price et al. 1998). It is
clear that in strong hypomorphic alleles of dbt PER levels
are constantly high, consistent with the idea that DBT
phosphorylates PER and destabilizes it. In the dbtS

mutant, PER accumulates more slowly in the nucleus
in the early evening phase and is degraded faster in the
late night and early morning (Bao et al. 2001). A
mutation in a serine residue of PER (perS) produced a
similar late-night effect as dbtS (Marrus et al. 1996). PER
is also phosphorylated by casein kinase 2, and mutations
in CK2 affect circadian periodicity most likely by
affecting the timing of the nuclear entry of PER (Lin

et al. 2002, 2005; Akten et al. 2003).
DBT phosphorylated PER is recognized by protein

phosphatase 2A (PP2A). Elevated PP2A activity stabilizes
PER and retains it in the nucleus throughout the day,
resulting in arrhythmic behavior (Sathyanarayanan

et al. 2004). Normally, PER phosphorylation displays a
robust circadian oscillation (Edery et al. 1994). There is
no obvious cycling of dbt RNA (Kloss et al. 1998) and
protein (Preuss et al. 2004), but the PP2A regulatory
subunit, tws, is expressed rhythmically, suggesting that
cyclic PER phosphorylation and subsequent nuclear
localization and degradation may be driven by cyclic
phosphatase activity. Alternatively, cyclic expression of
TIM may modulate the accessibility of PER to DBT,
thereby affecting cyclic PER phosphorylation (Kloss

et al. 2001). Indeed, PER is unstable, and its rhythmic
phosphorylation is abolished in tim null mutants (Price

et al. 1995). However, since there is no functional clock in
tim null mutants, presumably cyclic tws expression is also
abolished, as it is in cyc mutants (Sathyanarayanan et al.
2004); thus these two possibilities to explain rhythmic
PER phosphorylation cannot be distinguished.

It is clear that TIM stabilizes PER although the mech-
anisms are not known. It is possible that TIM binding
prevents DBT from phosphorylating PER (Kloss et al.
2001); without TIM, PER is hyperphosphorylated by
DBT and subsequently degraded (Cyran et al. 2005).
Alternatively, protein phosphatases may have better
access to the TIM-bound PER (Sathyanarayanan

et al. 2004; Fang et al. 2007). In fact, PER is dephos-
phorylated and stabilized by protein phosphatase 1
(PP1) in a TIM-regulated fashion (Fang et al. 2007).
Thus, TIM does not affect PP2A action on PER, but it
influences the stabilizing effect of PP1.

TIM stability and nuclear entry are likewise regulated
by phosphorylation and dephosphorylation. In addition
to its role in modulating light-dependent degradation
of TIM, SGG also regulates TIM phosphorylation under
constant dark conditions. Flies overexpressing SGG have
short periods, while sgg mutants have long periods. SGG
phosphorylation promotes TIM nuclear entry, which
may account for the faster clock (Martinek et al. 2001).
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Presumably, reduced expression of SGG decreases
phosphorylation of TIM and delays its nuclear entry,
thereby slowing down the clock. Although TIM levels
are increased in sgg mutants, it seems that TIM degra-
dation is not a direct consequence of SGG phosphory-
lation because TIM levels are not reduced in SGG
overexpressing cells (Martinek et al. 2001; Stoleru

et al. 2007). Since protein phosphatase 1 (PP1) dephos-
phorylates TIM (Fang et al. 2007), one might expect
that inhibition of PP1 would produce similar effects on
circadian period as SGG overexpression. However, in-
hibition of PP1 actually lengthens circadian period.
Moreover, inhibition of PP1 does not affect the initia-
tion of nuclear translocation although it delays the
accumulation of TIM in the nucleus due to an effect on
TIM stability. It is possible that SGG and PP1 target
different sites and thus regulate different aspects of TIM
nuclear entry and stability (Fang et al. 2007).

Hyperphosphorylated PER is a substrate for the
ubiquitin–proteasome degradation machinery. Slimb,
an F-box/WD40-repeat E3 ligase protein, is essential for
the degradation of phosphorylated PER and perhaps
TIM (Grima et al. 2002; Ko et al. 2002). In Slimb mutants,
high levels of hyperphosphorylated PER and TIM are
observed under constant dark conditions; in contrast,
both PER and TIM continue to oscillate under light:
dark conditions. Since PER stability depends upon TIM,
the normal cycling of PER levels in Slimb mutants under
light:dark conditions might be a secondary effect of light-
dependent TIM degradation. Thus, light-dependent de-
gradation of TIM does not rely on Slimb. As noted above,
another ubiquitin E3 ligase, JET, targets TIM for degra-
dation in response to light (Koh et al. 2006).

In the mammalian system also, post-translational regu-
lation of clock proteins plays an important role. PER,
CRY, and BMAL1 are phosphorylated by casein kinase 1
and PP1 dephosphorylates PER (Lowrey et al. 2000; Lee

et al. 2001; Akashi et al. 2002; Eide et al. 2002; Gallego

et al. 2006). A mutation in CK1e as well as a mutation in a
putative CK1e phosphorylation site on PER2 have even
been implicated in a human circadian disorder, familial
advanced sleep phase syndrome (FASPS) (Tohet al. 2001;
Xu et al. 2005). In addition, similar to Drosophila TIM
and PER, CRY is targeted for proteasomal degradation by
an E3 ligase F-box protein FBXL3. Loss-of-function
alleles of this gene have long circadian periods, consis-
tent with the role of mCRY as a repressor of CLOCK
activity (Godinho et al. 2007; Siepka et al. 2007).

THE Clk FEEDBACK LOOP

Interaction of the PER–TIM complex with CLK not
only represses CLK–CYC activity, but also brings DBT in
close proximity to CLK. Thus CLK is phosphorylated by
DBT and apparently dephosphorylated by PP2A (Kim

and Edery 2006). Under normal light:dark conditions,
Clk mRNA levels cycle with a robust circadian rhythm

(Bae et al. 1998; Darlington et al. 1998). However, this
robust mRNA cycling does not result in a corresponding
cycle of CLK protein abundance: Clk mRNA levels
change three to fivefold over the course of the day,
while CLK protein levels remain constant (Houl et al.
2006; Yu et al. 2006). It is possible that the turnover of
CLK has a rhythm that counters the effect of Clk mRNA
cycling, although the purpose of such regulation would
be difficult to explain. In fact, CLK is regulated in a
circadian fashion at the level of phosphorylation, with
the peak of phosphorylation occurring in the late night
and early morning (Kim and Edery 2006; Yuet al. 2006),
which is the same phase as the cycling of Clk mRNA.
Since phosphorylated CLK is turned over by the pro-
teasome degradation pathway, high levels of Clk mRNA
at these times may allow sufficient CLK protein to be
produced, thus keeping total CLK protein levels con-
stant. However, the significance of this constant CLK
protein level is unknown. One possibility is that constant
CLK protein levels serve to jump-start transcription when
repressors are removed, such as when flies are light
pulsed in the late night. In response to such a pulse, TIM
is degraded, releasing the repression of the PER–TIM
complex on the CLK–CYC heterodimer and promoting a
new cycle of transcription.

The CLK–CYC heterodimer regulates the expession
of another two transcription factors, PAR domain pro-
tein 1 (Pdp1) and basic leucine zipper (bZIP) transcrip-
tion factor vrille (vri), both Pdp1 and vri are activated by
CLK–CYC, so both have a robust circadian expression
pattern. And both proteins feed back to regulate Clk ex-
pression although in opposing ways (Blau and Young

1999; Cyran et al. 2003). PDP1 binds to the Clk pro-
moter via an E4BP4-binding site to activate Clk tran-
scription while VRI competes with PDP1 for binding to
the same site to repress Clk transcription. The PDP1
peak lags behind that of VRI, thus enabling sequential
repression and activation of Clk and giving rise to rhy-
thmic Clk mRNA expression (Blau and Young 1999;
Cyran et al. 2003; Glossop et al. 2003) (Figure 1). Other
factors may also be involved in regulating Clk mRNA
cycling because expression of a Pdp1 RNA interference
construct or wild-type Pdp1 in tim-expressing cells does
not disrupt cycling of Clk mRNA or of VRI (Benito et al.
2007). However, the overall significance of Clk mRNA
cycling and of the feedback loop generated through the
mutual regulation of Clk and vri/Pdp1 remains unclear.
As noted above, the CLK protein does not cycle. In ad-
dition, its overexpression does not affect free-running
rhythms, supporting the idea that levels of CLK do not
constitute timekeeping cues (Kim et al. 2002). Expres-
sion of Clk under the control of the per promoter, which
reverses the phase of mRNA expression, also has no sig-
nificant effect on free-running behavioral rhythms al-
though it affects the morning peak of locomotor activity
in the presence of light:dark cycles (Kim et al. 2002). We
speculate that the Clk feedback loop exists primarily to
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allow interfaces between the clock and other pathways.
For instance, vri and Pdp1 may be regulated by inputs to
the clock, and they may also cyclically activate/repress
downstream genes. In this scenario, the cycling of Clk
mRNA would be an epiphenomenon generated through
the cyclic activity of VRI and PDP1.

In mammals, Bmal1 is regulated through a feedback
loop similar to the Clk loop in Drosophila. The nuclear
receptors Rev-erb a and Rora are expressed cyclically un-
der the control of CLOCK–BMAL1 activity, and they re-
press and activate Bmal1 expression respectively. This
feedback mechanism maintains robust oscillations of
Bmal1 mRNA (see reviews by Ko and Takahashi 2006;
Levi and Schibler 2007).

RELEVANCE OF THE DIFFERENT MOLECULAR
OSCILLATIONS IN THE CLOCK

We have just questioned the importance of the Clk
feedback loop for the essential timekeeping mecha-
nism. Similar concerns may apply to the Bmal1 loop in
mammals, given that a knockout of Rev-erba, which loses
Bmal1 oscillations, is able to maintain basic clock
function (Preitner et al. 2002). In addition, we pointed
out studies that show that all components of the per–tim
feedback loop, or of the per–Cry loop in mammals, need
not necessarily cycle. The question, then, is what must
cycle to generate a functional clock? While there is, as
yet, no definitive answer to this question, it is worth
examining the clock mechanism in the simplest organ-
ism known to have a clock—cyanobacteria.

Although a feedback loop similar to the one described
above exists in cyanobacteria, a rhythm of autophosphor-
ylation of the clock protein KaiC persists without cyclic
RNA and protein expression (Tomita et al. 2005). Re-
markably, cyclic phosphorylation of KaiC can be recon-
stituted in a test tube by incubating it with ATP and two
other clock proteins, KaiA and KaiB (Nakajima et al.
2005). Thus the transcription–translation feedback loop
is not necessary for this circadian clock. However, this
clock drives rhythmic transcription of much of the
cyanobacteria genome, perhaps in response to a cellular
metabolism zeitgeber (Lakin-Thomas 2006; Woelfle

and Johnson 2006). Interestingly, metabolic cues can
also affect circadian clocks in other organisms. The redox
state modulates mammalian CLOCK activity by regulat-
ing its DNA-binding efficiency (Rutter et al. 2001).
Recently, we showed that oxidative stress affects the mo-
lecular circadian clock in Drosophila. Mutations in a
FOXO transcription factor increase the sensitivity of the
Drosophila clock to oxidative stress and result in de-
generation of circadian rhythms (Zheng et al. 2007).

RHYTHMIC CLK–CYC ACTIVITY MAY BE ESSENTIAL
FOR A FUNCTIONAL CLOCK

While it is tempting to speculate that circadian clocks
in eukaryotic organisms are generated through mech-

anisms similar to those in cyanobacteria, this is not likely
to be the case. It may be possible to dispense with
rhythmic transcription for some genes, but we predict
that some clock mRNAs continue to cycle. In the
experiments described earlier where per and tim mRNA
were kept constant (Yang and Sehgal 2001), mRNA
levels of the PP2A regulatory subunit, tws, were probably
still cycling and may have been sufficient to drive the
rhythmic phosphorylation and thereby the cycling of
PER. Cycling PER, in turn, would have rhythmically
regulated activity of CLK–CYC. In the mammalian cell
culture experiment where rhythms persisted despite
constant levels of mCRY (Fan et al. 2007), some genes
relevant to post-translational control of mCRY may have
been expressed rhythmically. For example, mPER serves
as a scaffold to mediate CKI e phosphorylation of mCRY
(Eide et al. 2002). This may have been sufficient for
mCRY to rhythmically repress CLOCK–BMAL1. Experi-
ments in the mammalian system have, in fact, demon-
strated that repression of CLOCK–BMAL1 activity is
essential for clock function (Sato et al. 2006).

As noted above, although levels of Drosophila CLK are
constant throughout the day, there are robust daily
oscillations of its phosphorylation (Houl et al. 2006; Yu

et al. 2006). In addition, phosphorylation of CLK appears
to directly affect its transcriptional activity (Kim and
Edery 2006; Yu et al. 2006) ½Likewise, transcriptional
activity of mammalian BMAL1 and the cyanobacterial
clock protein KaiC is regulated by phosphorylation (Eide

et al. 2002; Nishiwaki et al. 2004; Xu et al. 2004).� Since
the phosphorylation of CLK is PER dependent (Kim and
Edery 2006; Yu et al. 2006), oscillations of PER could
confer rhythmic regulation of CLK activity. Thus it seems
that an oscillation of PER is a prerequisite for a functional
clock. This oscillation has several components: cyclic PER
protein expression and phosphorylation (Edery et al.
1994), rhythmic nuclear localization (Vosshall et al.
1994; Price et al. 1998), and subsequent binding to CLK–
CYC (Lee et al. 1999) (Figure 2).

Overexpression of per or tim in the central clock cells
abolishes protein cycling and results in arrhythmic be-
havior in many flies (Kaneko et al. 2000; Blanchardon

et al. 2001; Yang and Sehgal 2001). The arrhythmicity
may be due to increased levels of PER or TIM per se or
due to the loss of rhythmic protein phosphorylation or
due to a disruption in cyclic nuclear entry (these mech-
anisms are not mutually exclusive). Regardless of the
precise mechanism, rhythmic repression of CLK–CYC
by the PER–TIM complex, which involves PER-depen-
dent phosphorylation of CLK by DBT, would be dis-
rupted. This would lead to noncyclic expression of
clock-controlled downstream target genes. On the basis
of the mammalian study that indicates that the cycling
of CRY is not essential, we predict that it is not the loss of
PER or TIM cycling per se that causes the arrhythmia, but
rather the loss of cyclic nuclear entry, which may, in
turn, be regulated by phosphorylation. We propose that
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the critical function of PER–TIM in the clock is to
rhythmically enter the nucleus and repress CLK–CYC,
perhaps by providing DBT kinase activity.

Having argued that rhythmic activity of clock pro-
teins, rather than rhythmic levels, is key to the time-
keeping process, some aspects of clock function may
require alterations in protein levels. For instance, in all
organisms examined, light alters the levels of a clock
component. Thus, it seems that the initial event in
resetting a clock, or perhaps even in initiating a clock, is
a change in the levels of a clock protein. In this context,
it is interesting that ectopic expression of Clk is sufficient
to generate molecular cycling of tim and cry under
light:dark conditions (Zhao et al. 2003). It appears that
CLK is able to activate and orchestrate the oscillation of
necessary components when ectopically expressed. How
this cycling is initiated is not clear. Since it is possible
that light-driven TIM degradation jump-starts the feed-
back loop in nonclock cells, it would be interesting to
see if ectopic CLK expression can start an oscillator in
constant darkness.

Despite this emphasis on CLK, it is important to note
that the transcriptional heterodimer at the center of the
timekeeping mechanism does not have to include CLK
in particular. Indeed, mice with a deficiency of Clock
have functional clocks (Debruyne et al. 2006). Most
mammalian circadian phenotypes are based on a
dominant negative allele of Clk, which produces phe-
notypes more severe than those produced by a Clk
deficiency, perhaps because dominant negative CLK
interferes with BMAL1 binding to another partner.
Indeed, BMAL1 can partner with the mCLK paralog

NPAS2 that functions in the basal forebrain and other
tissues (Reick et al. 2001). Recent findings demonstrate
that CLK and NPAS2 act redundantly in the master pace-
maker, the suprachiasmatic nucleus (SCN) (Debruyne

et al. 2007a,b). In contrast, mCLK is necessary for circa-
dian clock function in some peripheral tissues (Kennaway

et al. 2006; Debruyne et al. 2007b).
Finally, it is important to note that while rhythmic

transcription of some clock genes can be experimentally
dispensed with, this is not to say that it is without
function. Rhythms are less robust and penetrant, and
periods are less precise when these genes are expressed
noncyclically. Moreover, flies that express per and tim
constitutively show defects in their response to pulses of
light (Yang and Sehgal 2001). Overexpression of mPer1
also impairs normal entrainment and molecular oscil-
lations in mammals (Numano et al. 2006), supporting
the idea that these responses depend upon cycling RNA.
In further support of a role for transcription, new
transcription factors continue to be identified as part
of the clock mechanism. A bHLH ORANGE family
protein CLOCKWORK ORANGE (CWO) is one such
recently identified factor. Cwo is activated by CLK–CYC
through the E-box in its promoter, and it also feeds back
to synergize with PER to repress CLK–CYC activity.
These feedback loops thus are able to amplify the
oscillation and maintain a robust 24-hr cycle (Kadener

et al. 2007; Lim et al. 2007; Matsumoto et al. 2007).
In summary, we are learning that the mechanism of

the clock is much more intricate than previously
thought. There are likely multiple feedback loops that
lie at the heart of the clock, and some aspects of clock

Figure 2.—Model of the Drosophila
circadian clock depicting the impor-
tance of post-translational modifica-
tions. Clock genes such as per and tim
and other clock-controlled genes
(CCGs) are activated by CLK–CYC dur-
ing the day, and their transcription
peaks in the early night. The PER–
TIM complex forms during the second
half of the night and translocates into
the nucleus to repress CLK–CYC activity.
A balance of kinase and phosphatase ac-
tivity regulates the stability of PER, TIM,
and CLK and most likely the nuclear en-
try of PER and TIM. Casein kinases DBT
and CKII phosphorylate PER and the
glycogen synthesis kinase SGG phos-
phorylates TIM. PP2A and PP1 dephos-
phorylate both PER and TIM. For the
sake of simplicity, each is shown here
acting only on the primary target
(PP2A on PER and PP1 on TIM). Ac-
cording to this model, critical steps of
the timekeeping process are controlled
by post-translational modifications of
key clock proteins. Note that nuclear ex-
pression of SGG and PP1 has not been
experimentally determined.
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function may be maintained through redundant mech-
anisms. While post-translational regulation is clearly
critical to maintaining a clock, we believe it is unlikely
that eukaryotic clocks will turn out to be entirely free of
transcriptional control as is the cyanobacteria clock.
Thus, while a subset of clock mRNAs, and even clock
proteins, may be held at constant levels without com-
plete loss of clock function, others are likely cycling
under these conditions. In addition, even the dispens-
able oscillations probably serve functions that may
sometimes be too subtle to detect.

Due to space limitations, many important original findings could
not be cited. This work was supported by a National Institutes of
Health grant R01 NS048471.
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