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ABSTRACT

Nonrandom mating induces correlations in allelic states within and among loci that can be exploited to
understand the genetic structure of natural populations (Wright 1965). For many species, it is of con-
siderable interest to quantify the contribution of two forms of nonrandom mating to patterns of standing
genetic variation: inbreeding (mating among relatives) and population substructure (limited dispersal of
gametes). Here, we extend the popular Bayesian clustering approach STRUCTURE (Pritchard et al. 2000)
for simultaneous inference of inbreeding or selfing rates and population-of-origin classification using
multilocus genetic markers. This is accomplished by eliminating the assumption of Hardy–Weinberg
equilibrium within clusters and, instead, calculating expected genotype frequencies on the basis of
inbreeding or selfing rates. We demonstrate the need for such an extension by showing that selfing leads
to spurious signals of population substructure using the standard STRUCTURE algorithm with a bias
toward spurious signals of admixture. We gauge the performance of our method using extensive coa-
lescent simulations and demonstrate that our approach can correct for this bias. We also apply our ap-
proach to understanding the population structure of the wild relative of domesticated rice, Oryza rufipogon,
an important partially selfing grass species. Using a sample of n ¼ 16 individuals sequenced at 111 random
loci, we find strong evidence for existence of two subpopulations, which correlates well with geographic
location of sampling, and estimate selfing rates for both groups that are consistent with estimates from
experimental data (s � 0.48–0.70).

UNDERSTANDING the mating structure of natural
populations is a major goal of population biol-

ogy. Here we consider the problem of using genotype
data from a sample of individuals to distinguish be-
tween two forms of nonrandom mating: inbreeding or
mating among relatives and population subdivision or
limited dispersal of gametes. As Sewall Wright dem-
onstrated, both of these evolutionary forces induce a
correlation in allelic state among uniting gametes (i.e.,
autozygosity) (Wright 1931, 1965). Specifically, writ-
ing {Ai, Aj} to denote the outcome of inheriting alleles i
and j at a particular locus of interest, Wright thought
about the problem in terms of the correlation in state:

corrðAi ; AjÞ ¼
CovðAi ; AjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðAiÞVarðAjÞ

p
¼ pij � pipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pið1� piÞpjð1� pjÞ
p :

In a randomly mating population, the probability of
inheriting a combination of alleles {Ai, Aj} is, by defi-
nition, given by the product of their marginal probabil-
ities (i.e., pij ¼ pi pj). Therefore, under random mating

there is no correlation in allelic state among the genes
inherited from the two parents.

In a subdivided population with inbreeding, however,
the correlation in allelic state, FIT, may be nonzero and
is given by Wright’s famous equation

FIT ¼ 1� ð1� FISÞð1� FSTÞ; ð1Þ

where FIS is equivalent to the correlation in state con-
ditional on subpopulation of origin, and FST is the cor-
relation in state among randomly sampled alleles within
subpopulations. The first is a measure of inbreeding
and the second is a measure of population substructure.
This equation demonstrates that the relative contribu-
tion of the two forces to deviations from random mating
are of comparable magnitude and depend critically on
the particular values of the parameters.

Although this phenomenon is appreciated by many pop-
ulation geneticists, many modern statistical approaches
for analyzing genotype data ignore one of these two
components. For example, methods for identifying pop-
ulation structure among a sample of individuals assume
random mating within subpopulations (Pritchard et al.
2000; Dawson and Belkhir 2001; Corander et al. 2003;
Falush et al. 2003). Likewise, methods for estimating
self-fertilization rates from genotype data assume indi-
viduals are sampled from a single population (Ayres

and Balding 1998; Enjalbert and David 2000) or
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require labor-intensive approaches such as progeny
arrays (direct genotyping of offspring–mother pairs)
(Ritland 2002). Therefore, considerable interest exists
in the development of an approach that can reliably
estimate the degree of population subdivision and in-
breeding rates from a sample of genotyped individuals of
unknown relatedness.

Our starting point in this study is the widely used
program STRUCTURE (Pritchard et al. 2000; Falush

et al. 2003), which implements a Bayesian clustering al-
gorithm that simultaneously estimates locus allele fre-
quencies and probabilistically assigns individuals to one
of K subpopulations. STRUCTURE works by exploiting
a key concept in population genetics: undetected pop-
ulation substructure leads to a genomewide deficit of het-
erozygotes in a sample as compared to the predictions
of the Hardy–Weinberg equilibria (HWE) (Wahlund

1928; Hartl and Clark 1997). Informally, by assigning
individuals probabilistically across a fixed number of K
subpopulations, the algorithm minimizes deviations from
HWE across the whole sample by maximizing within-
subpopulation HWE as well as linkage equilibrium
among unlinked loci. It is important to note, however,
that various genetic and evolutionary forces can also
lead to a genomewide deficiency of heterozygotes in a
sample. In hermaphroditic populations, for example,
partial self-fertilization reduces heterozygosity by a fac-
tor ð1� sÞ=ð1� ðs=2ÞÞ, where s is the proportion of prog-
eny produced by self-fertilization (Haldane 1924). Since
STRUCTURE assumes that individuals in the sample
are either fully outcrossing or haploid, application of
the algorithm to partially selfing populations may result
in spurious inference of population structure and/or
admixture as pointed out in Falush et al. (2003). (It is
important to note that under the extreme case of com-
plete self-fertilization, one can sidestep this issue by
treating each diploid individual as haploid.)

To investigate spurious evidence for admixture in
the presence of partial self-fertilizaton, we modified
Hudson’s implementation of the standard coalescent
algorithm (Hudson 1997) to accommodate partial self-
ing (Nordborg and Donnelly 1997) and generated a
sample of 100 individuals drawn from a population with
selfing rate s ¼ 0.5 genotyped at 100 loci. We then ran
the standard STRUCTURE 1.0 algorithm assuming two
clusters (K ¼ 2) on this data set (see the Simulations
section for details). We expect STRUCTURE to assign
all individuals to one of the two clusters shown in Figure
1c, since we have simulated data from a single unstruc-
tured population. Figure 1, a and b, generated by the
Distruct program (Rosenberg et al. 2002), summarizes
the posterior assignment probabilities. For this data set
drawn from a single population, STRUCTURE classified
all individuals as ‘‘admixed’’ with 50% of their genome
coming from cluster 1 (green) and 50% coming from
cluster 2 (purple). This result holds regardless of whether
one considers the correlated (i.e., F model) or uncorre-

lated allele frequency models and suggests that applica-
tion of STRUCTURE to data from a partially selfing
population may lead to spurious signals of population
substructure as initially suggested by Falush et al. (2003).

To quantify this effect further, we repeated the pro-
cedure above for 100 data sets simulated for each of six
levels of selfing and ran STRUCTURE under both K ¼ 1
and K ¼ 2. To gauge the improvement in fit between
the K ¼ 1 and K ¼ 2 models, we compared the differ-
ence in average log-likelihood score across retained
draws from Markov chain Monte Carlo (MCMC):

log L ¼ E log LðK ¼ 2; u jDataÞ
� E log LðK ¼ 1; u jDataÞ: ð2Þ

The distribution of log L for different values of s is
plotted in Figure 1d(A). We note that when s ¼ 0.0, the
population is completely outcrossing and the distribu-
tion of log L provides the null distribution of the test
statistic under the hypothesis of no selfing and no pop-
ulation structure. Figure 1d(A) shows that as selfing rate
increases so does the distribution of log-likelihood dif-
ference between K ¼ 2 and K ¼ 1 leading to increased
rejection of the null hypothesis. When the selfing rate
is .0.5, the whole of the distribution of log L exceeds
the critical value, resulting in a 100% false positive rate.

Therefore, we concluded that a modification to the
basic model of STRUCTURE is essential when wanting
to infer population structure for partially selfing species
or those with a recurrent pattern of inbreeding. This
article presents and validates such an approach, which
we term ‘‘InStruct.’’ When InStruct is applied to the
data sets above, it both reduces the false positive rate
dramatically (see Figure 1d) and corrects for spurious
admixture completely (see Figure 1c).

The new algorithm we present here extends the
STRUCTURE 1.0 framework by incorporating the pos-
sibility of inbreeding among individuals in the sample.
Much of this article is focused on self-fertilization, but
the program has been written generally so as to estimate
inbreeding coefficients as well. We consider two general
scenarios: a population-specific process by which all in-
dividuals within one subpopulation share the same self-
ing potential (which may reflect a shared environment,
for example) as well as a model where selfing probabil-
ities vary among individuals in the whole sample. This
model is particularly useful for modeling population
substructure when some samples have been artificially
propagated in the lab (or the field) through enforced
selfing. For this scenario, we use a Bayesian density es-
timation algorithm called the Dirichlet process mixture
model (DPMM), which offers great flexibility in estimat-
ing the distribution of latent (or unobserved) variables
in the probabilistic model. It has recently been used to
estimate the distribution of v ¼ dN/dS along a protein-
coding sequence (Huelsenbeck et al. 2006). We quan-
tify the power, robustness, and accuracy of the approach
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using data simulated under a myriad of scenarios, varying
both the degree of selfing and population substructure.

A major motivation for our research was the desire to
understand population structure in the wild ancestor of
domesticated Asian rice (Oryza rufipogon), in an effort to
identify wild germplasm for improvement of this impor-
tant crop species. Therefore, to illustrate the application
of our method and to investigate the role of inbreeding

and population substructure in O. rufipogon, we apply
InStruct to multilocus data from a sample of 16 indi-
viduals collected from various localities across Southeast
Asia. We find strong evidence of population subdivision
in O. rufipogon, as well as evidence for geographic varia-
tion in the rates of self-fertilization. Potentially the most
important feature of InStruct is that it allows the iden-
tification of variation in mating system in either structured

Figure 1.—Population assignments for a single data set of 100 individuals simulated under partial selfing (s ¼ 50%) and no
population substructure and analyzed assuming K ¼ 2. (a and b) The Distruct graph from STRUCTURE using (a) the correlated
alleles model and (b) the uncorrelated alleles model. (c) The Distruct graph from InStruct of the same data set. (d) Distribution
of log-likelihood difference between the K ¼ 2 and the K ¼ 1 model under six levels of population selfing rates as estimated by
STRUCTURE using the F model (A)/InStruct (B). Each colored line represents the density of average log-likelihood difference
with 100 replicate data sets simulated without population structure and under a specific selfing rate, indicated in the inset.
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or unstructured populations, which in turn opens the
door to using molecular population genetic approaches
to investigate the evolution of mating systems.

THEORY

A myriad of factors influence selfing rates in natural
populations, including genetic and developmental fac-
tors (such as presence/absence of self-incompatibility
loci, flower shape, deleterious mutation rate, etc.) as
well as abiotic and biotic environmental factors (such as
availability of animal pollinators, local population den-
sity, rainfall variation, etc.). Furthermore, plants obtained
from intensively managed populations (such as seed
centers that propagate varieties of food crops) are often
the result of artificial selfing (i.e., purification) and dif-
ferent lines may have been propagated for different
numbers of generations via self-fertilization.

Our model is not explicit as to which of these factors
(if any) is influencing selfing rate, but rather, we start
from the premise that each individual in the sample has
a constant but unknown selfing potential that we wish
to estimate from the available genetic data. The selfing
potential of an individual is defined as the probability
that the individual reproduces via self-fertilization (see
below). We consider two models for how selfing varies
among individuals in the sample: a ‘‘population-specific’’
model and an ‘‘individual’’ model.

Under the population-specific model, the selfing po-
tentials are equal for individuals assigned to the same
population and equivalent to the proportion of off-
spring produced via self-fertilization each generation.
This is a reasonable model if local environmental factors
are the chief determinants of selfing rate. Under the
individual model, we use a form of Bayesian probability
density estimation to estimate the selfing rate for each
individual in the sample, potentially combining indi-
viduals with statistically similar rates and splitting up
individuals with statistically different rates. This is a par-
ticularly useful model for analyzing genetic material
from seed centers where different lines may have been
the result of propagation by self-fertilization and the
number of generations of propagation differs among
lines (and is often unknown).

Parameter notation: We borrow much of our nota-
tion from Pritchard et al. (2000). Probability densities
are denoted by calligraphy fonts: U represents the
uniform distribution, G the geometric distribution,
andD the Dirichlet distribution. Uppercase italic letters
(e.g., P, G, X ) are vectors or matrices of random variables
and lowercase italic letters (e.g., p, g, x) represent in-
stantiations of the random variables. Letters in boldface
type represent constants (e.g., K, D) and every effort is
made to retain the same notation as in the original
STRUCTURE articles.

Assume a sample of N individuals genotyped at L loci
are to be classified into K populations with ploidy D.
(Throughout this article we consider the diploid case
D ¼ 2). We incorporate the possibility of admixture into
the model by allowing an individual’s genotype at a
locus to be composed of alleles from distinct popula-
tions. This is true even for selfing individuals since their
genomes can be mosaics of haplotypes recently derived
from selfing of an admixed parent.

As in Pritchard et al. (2000), denote marker allele
frequencies by P ¼ fpklj :k ¼ 1; 2; . . . ;K; l ¼ 1; 2; . . . ;L,
and j ¼ 1; 2; . . . ; Jlg such that pklj is the allele frequency
of the jth allele type at the lth locus in the kth popula-
tion, where Jl is the number of distinct alleles at the lth
locus. For each individual i, let X ¼ fxild : i ¼ 1; 2; . . . ;
N; l ¼ 1; 2; . . . ;L, and d ¼ 1; 2; . . . ;Dg, where xild is the
allele carried at locus l for the dth copy. In accordance
with Pritchard et al. (2000), let Z ¼ fzild : i ¼ 1;
2; . . . ;N; l ¼ 1; 2; . . . ;L, and d ¼ 1; 2; . . . ;Dg repre-
sent the matrix of zild, the population of origin of the
dth allele copy at the lth locus in the ith individual and
let Q ¼ fqik : i ¼ 1; 2; . . . ;N and k ¼ 1; 2; . . . ;Kg be the
matrix of qik, the proportion of the ith individual’s
genome originating from population k.

Write S ¼ fsi : i ¼ 1; 2; . . . ;Kg to denote the selfing
rates for the K subpopulations and G ¼ fgi : i ¼ 1;
2; . . . ;Ng to denote the vector containing the number
of generations until each individual experiences an
outcrossing event in the past. Furthermore, let Q ¼
fui : i ¼ 1; 2; . . . ;Ng be the vector of individual selfing
potentials, where ui is the probability that individual i
reproduces via self-fertilization in a given generation.
We assume that this parameter is constant in time for a
given individual. Under the population-specific model,
we further assume that all individuals from a given pop-
ulation have the same value of ui and that this quantity is
equivalent to sk, the percentage of offspring produced
via selfing in subpopulation k. To estimate selfing rates
for individuals of admixed ancestry, we need to make
some mathematical assumptions as to how to combine
selfing potentials. The model we employ in InStruct is
a weighted average of population-specific selfing rates. In
particular, if an individual cannot be classified unambig-
uously into one of K subpopulations, we model the
individual’s selfing potential as the weighted average of
the K population selfing rates with weighting constants
equal to the qik, the proportion of individual i’s genome
that we estimate to originate from population k (see
Equation 7 below).

We use a superscript to track parameters within MCMC
iterations such that S ðmÞk is the value of the selfing rate
for population k at iteration m of an MCMC chain. When
available, we use conjugate priors since these make the
MCMC much more efficient by often enabling Gibbs
sampling. These priors can also easily accommodate pre-
vious information about population structure and self-
fertilization rates.
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Modeling selfing: We model the number of gener-
ations gi until an outcrossing event for the ith individual
as a geometric random variable with probability of suc-
cess 1 � ui, where ui is the selfing rate for individual i:

Pðgi ¼ g j uiÞ ¼ u
g�1
i ð1� uiÞ: ð3Þ

This amounts to assuming that whether an individual
selfs or not is independent from generation to genera-
tion and constant in time. Thus gi

(m)¼ 1 indicates that at
step m in our MCMC, the ith individual is generated
by an outcrossing event in the previous generation,
whereas gi

(m) . 1 implies individual i was produced via
selfing that extends gi

(m) � 1 generations into the past.
The reason for conditioning on G is that the likeli-

hood of the data given parameters P, G, and Z does not
depend on S or Q , greatly simplifying our calculations
(see Equations 5 and 6). Specifically, we write the likeli-
hood of the genotype data given allele frequencies, pop-
ulation assignments, and number of generations back
until an outcrossing event as

LðX jP ;G ;ZÞ ¼
YN
i¼1

YL
l¼1

Pðxil : j gi ; zil :; p:l :Þ; ð4Þ

where Pðxil : j gi ; zil :; p:l :Þ is the genotype frequency of
individual i at locus l. If the two alleles for this genotype
are from different subpopulations (i.e., zil 1 6¼ zil 2), we
assume the genotype frequency is the product of the
population allele frequencies (amounting to random
mating among populations). If the population assign-
ment is the same, our probabilities follow directly from
basic population genetic theories. If individual i is the re-
sult of gi� 1 generations of selfing, then the probability
of homozygosity for the A allele is

Pðxil : ¼ AA j gi ; zil :; p:l :Þ ¼ p2
A 1 2pAð1� pAÞ3

Xgi�1

g 9¼1

0:5g 9;

ð5Þ

where pA is the allele frequency of A in its assigned
subpopulation. If individual i is heterozygous at locus l
(suppose the genotype is Aa at that locus), the genotype
probability is

Pðxil : ¼ Aa j gi ; zil :; p:l :Þ ¼ 2pApa 3 0:5ðgi�1Þ: ð6Þ

In modeling inbreeding more generally, we can replace
the above equations by their usual analogs in Wright’s
formulation conditional on the inbreeding coefficient F
(see appendix). For simplicity, we remain for the rest of
this article focused on selfing, but note that InStruct has
an option for modeling inbreeding as well. Next we turn
to models for how selfing rates vary among individuals
and populations.

Population-specific model: For the population-specific
model, we define the selfing potential ui conditional on
the population assignments of individual i as

ui ¼
XK

k¼1

Pðindividual i is the product of selfing in the

previous generation given it is from

population kÞ
3Pðindividual i comes from population kÞ:

If we assume that the probability that individual i comes
from population k equals the proportion of individual
i’s genome that originates from population k that has
selfing rate sk, we obtain

ui ¼
XK

k¼1

skqik : ð7Þ

Individual variation in selfing model: A clear limitation
of the population-specific model is that it does not allow
for selfing rate variation among individuals within sub-
populations, which may be an important feature of the
data. To relax this assumption, we employ the DPMM.
The rationale behind this approach is not biological,
but statistical. Instead of assuming a distribution for
selfing rates among individuals and estimating param-
eters of the model (e.g., beta distribution, logit, probit,
etc.), we use a Bayesian version of nonparametric
density estimation to ‘‘learn’’ the selfing rates from the
data. Informally, it is equivalent to smoothing a histo-
gram of individually estimated selfing rates and taking
our uncertainty in the smoothing function into account.
Smoothing occurs via collapsing and expanding sets of
individuals that have been assigned the same identical
selfing rate (a class) and updating the selfing rate as-
signed to each class. The parameter governing the
smoothing function, a, works mathematically by influ-
encing the prior distribution on the number of classes.

In essence, the DPMM model generates partitions of
selfing rates where within a partition all individuals have
the same selfing rate. Formally, we think of the Dirichlet
process mixture model as a finite mixture model where
the number of mixture components is a random vari-
able. We treat each individual’s selfing rate as arising
from the same distribution family with different param-
eters for each component. The joint prior distribution
of all selfing rates in the DPMM model corresponds to a
generalized Polya urn scheme. The hierarchical struc-
ture of the Dirichlet process mixture model is

F � DPða; F0ðuÞÞ
ui j F � F ðuÞ
gi j ui � Gð1� uiÞ;

where DPða; F0ðuÞÞ is the Dirichlet process with base
distribution F0 and scaling parameter a . 0, and F is
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a random distribution drawn from the DP, with the
graphical model representation shown in supplemental
Figure 1 at http://www.genetics.org/supplemental/. In
words, the above is saying that the distribution F from
which the selfing rate for individual i is drawn follows a
Dirichlet process. Conditional on the parameters gov-
erning F, the selfing rate ui is drawn. Conditional on the
selfing rate ui, the number of generations until out-
crossing gi is geometrically distributed. The Bayesian
framework treats the probability distribution F as an
infinite-dimensional parameter, whose prior distribu-
tion is Dirichlet process and posterior is a mixture of
Dirichlet processes (MacEachern and Muller 1998
and McAuliffe et al. 2004). In our case F0 is assumed to
be the uniform distribution on ½0, 1�. In practice, this
amounts to modeling the selfing rate for individual i as
either sampled from the uniform distribution or iden-
tical to one of existing selfing rates according to the
following probabilities:

Pðui ¼ s j u1; u2; . . . ; ui�1; a; F0Þ

¼

a

a 1 i � 1
"j , i; uj 6¼ s

1

a 1 i � 1

Xi�1

j¼1

Ifuj¼sg dj , i; s:t:uj ¼ s:

8>>><
>>>: ð8Þ

To update ui under the individual selfing rate model,
we use iterative Gibbs sampling. That is, we sample ui

from its posterior distribution conditional on all other
selfing rates in the sample u(�i) and G,

Pðui ¼ s j uð�iÞ; GÞ

¼
abq0hðui j giÞ "j ; uj 6¼ s

b
Xn

j¼1; j 6¼i

f ðgi j ujÞIfuj¼sg dj ; s:t:uj ¼ s;

8><
>: ð9Þ

where f(gi j uj) is the density function for the geometric
distribution and b is a normalizing constant: b ¼ ðaq0 1Pn

j¼1;j 6¼i f ðgi j ujÞÞ�1. Here, q0 is the probability of the
number of generations until outcrossing gi, q0 ¼Ð 1

0 F0ðs9Þf ðgi j s9Þds9 ¼
Ð 1

0 f ðgi j s9Þds9, since F0(s) ¼ 1 for
s 2 ½0, 1�. And h(ui j gi) is the posterior distribution on ui

(the selfing rate for individual i), given gi; i.e., hðui j giÞ ¼
F0ðuiÞf ðgi j uiÞ=q0 ¼ f ðgi j uiÞ=q0. In words, the equation
above states: assign individual i a unique selfing rate
drawn from the posterior distribution h(ui j gi) with prob-
ability abq0; otherwise, assign individual i to an existing
selfing rate s with probability proportional to the sum of
likelihood of generations of individuals that already
carry selfing rate s multiplied by the normalizing term b.
The number of classes of selfing rates is randomly deter-
mined by the Polya urn model, which is governed by the
scaling parameter a. It is interesting to note that the prior
distribution on the number of classes is identical to the
Ewens sampling distribution for a panmictic neutrally
evolving Wright–Fisher population as has been pointed
out by several authors (e.g., Tavare and Ewens 1998).

Markov chain Monte Carlo procedure: To sample
from the posterior distribution of all parameters in our
model, we use a single-component Metropolis algorithm
with blockwise updating. The sampling scheme consists
of five updating steps. For the mth iteration, the se-
quence of parameter updating is

1. Update allele frequencies P(m) via the Gibbs sampler.
2. Update selfing rates S(m) at either population or in-

dividual levels. Under the population-specific model,
selfing rates are updated using the back-reflection
sampler (BRS) or the ‘‘adaptive independence sam-
pler’’ (AIS) (see appendix for more information).
Selfing rates under the individual model are pro-
duced from the Dirichlet process mixture model.

3. Update the number of generations until outcrossing
events G(m) via an independent Metropolis–Hastings
step.

4. Update the population assignments Z(m) via the Gibbs
sampler.

5. Update the proportion of genome assignments Q(m)

via the Gibbs sampler.

The mathematical details are provided in the appendix.
The above algorithm has been implemented in an ANSI C
computer program, InStruct (Inbreeding and Substruc-
ture) available from bustamantelab.cb.bscb.cornell.edu/
software.shtml. A web interface for InStruct is also avail-
able through cbsuapps.tc.cornell.edu/InStruct.aspx.

Inference: The selfing rate of each population (or in-
dividual) is estimated as the sample average over M
retained MCMC draws:

Eðsk jX Þ �
1

M

XM
m¼1

s
ðmÞ
k :

Posterior credibility intervals are constructed using
the symmetric percentage method ½i.e., a=2 and (1�
ða=2Þ) empirical quantiles of the MCMC draws for
an a-level credibility interval� since we have found that
the posterior mean is often very close to the posterior
median, implying symmetric posterior distribution of
population selfing rates. We also consider the posterior
median as a point estimator of individual selfing rates
since the posterior distribution of selfing rates is often
quite skewed. Inference for the rest of the parameters is
done in a similar manner as in Pritchard et al. (2000).

Assessing convergence: To assess convergence of our
MCMC scheme, we use the Gelman–Rubin statistics that
are based on the one-way analysis of variance (ANOVA)
and compare the within-chain variance to the between-
chain variance (Gelman and Rubin 1992). At stationarity,
these should be equal. We use the Gelman–Rubin statistics
to check the convergence of log-likelihood and selfing
rates across different chains after applying the following
identifiability constraint to the retained MCMC draws:

As in other Bayesian mixture settings, we are faced
with the label-switching problem across chains ½i.e., for
different chains the algorithm may switch the labels of
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which population is 1, 2, etc., without affecting the like-
lihood ( Jasra et al. 2005)�. We apply a simple identi-
fiability constraint on the parameter space to break
the symmetry in the likelihood; namely, the posterior
mean selfing rate of each population along the MCMC
is calculated and sorted in ascending order and the
population with lowest average selfing rate is labeled
1; thus only one permutation of population labeling
is obtained. This constraint is obviously effective
only when the selfing rates differ substantially among
subpopulations.

Simulations: To assess the power and robustness of
this approach under different selfing scenarios, we sim-
ulate data using standard coalescent theory with selfing
and population structure. We treat each diploid individ-
ual as a deme of two chromosomes and use a separation-
of-timescales approach to draw samples under selfing
(Nordberg and Donnelly 1997; Nordborg 2000;
Wakeley 2000). The simulation was a two-step process:

Step 1. Calculate for each locus the number of lineages
n9l that make it through the scattering phase:

1. Sample the number of generations G¼ {gi: i¼ 1,
2, . . . , N} until an outcrossing event in the past
for each individual from the geometric distribu-
tion Gð1� uiÞ. (This random variable is a con-
stant across all the loci for a given individual and
will strongly influence whether lineages for a
given individual coalesce due to selfing or scatter
through outcrossing.)

2. If an individual is the product of outcrossing in
the previous generation (i.e., gi¼ 1), then for all
loci the pair of chromosomes do not coalesce
within individual i. Therefore, the probability
that the two chromosomes coalesce in the past,
denoted as ri, is 0. If an individual is a product of
selfing in the previous generation (gi ¼ 2), then
ri is simply 1

2 and if an individual is generated via
multiple generations of selfing (i.e., gi . 2), then
ri is 1� 0:5ðgi�1Þ.

3. For each locus l, draw Uil an independent
uniform(0, 1) random variable for i ¼ 1, . . . ,
N. If Uil , 1 � ri, set the number of lineages n9il
that make it out of the scattering phase to 2 for
individual i; otherwise, set it to 1.

4. Sum up among individuals to obtain the num-
ber of lineages at locus l that make it out of the
scattering phase: n9l ¼

P
i n9il .

Step 2. Given n9l , simulate allelic history at locus l via
the standard coalescent software ‘‘ms’’ (Hudson

2002). For all loci where individual i has n9il ¼ 1,
store the individual as homozygous due to selfing.

Using this procedure, we consider several substruc-
ture and selfing models assuming equal and constant
subpopulation sizes, no migration among subpopulations,
and a divergence time t of 0.5 measured in standard

units of 2N generations. We use ‘‘model k’’ to identify the
simulated population models, where k represents the
number of subpopulations in the sample, in our cases,
k ¼ {1, 2, 3, 6}.

We also consider several ‘‘individual’’-based models
for how selfing varies among individuals in the sample:

Model Ident: A single population with identical selfing
rates across individuals.

Model Norm: A single population with variable selfing
rates across individuals and the logit-transformed
selfing rates follow the normal distribution with mean
0 and standard deviation s; i.e., logðui=ð1� uiÞÞ �
N ð0;sÞ.

Model Beta: A single population with variable selfing
rates across individuals, which follow the beta distri-
bution with different combinations of scale and shape
parameters a and b; i.e., ui � Bða;bÞ.

RESULTS

Application to simulated data: Using the simulation
scheme outlined above, we generated 100 data sets per
parameter combination per population model and one
representative data set per parameter combination per
individual model. Detailed information regarding choice
of parameters is provided in Table 1. For each data set,
InStruct was run for five independent chains, each
chain with 1,000,000 iterations in total, 500,000 burn-in
iterations, and a thinning interval of 10 iterations be-
tween retained draws. For all the simulated runs, the
reported diagnostic Gelman–Rubin statistic is ,1.10,
indicating good convergence in both log-likelihood and
selfing rates. We also used the direct plotting method to
show the convergence of five MCMC chains with distinct
initial starting conditions. Diagnostic graphs of conver-
gence of selfing rates are provided in supplemental Fig-
ure 2 at http://www.genetics.org/supplemental/, showing
the first 2000 iterations of two randomly chosen data sets
under model 1 with selfing rates 0.3 and 0.7. The values
of the selfing rates converge quickly, normally entering
the stationary distribution within a few hundred itera-
tions. The convergence of population structure is slower
than that of selfing rates, but it is usually on the same order
as STRUCTURE. We observed that as the complexity of
population structure increased (i.e., as k increased), so
did the number of iterations of the MCMC algorithm
required to ensure convergence (data not shown).

Inference of selfing rates for population-specific models: Our
inference goals are twofold. First, we are concerned with
the accuracy of selfing rates estimation under each of the
simulation scenarios described above. Second, we wish to
assess the accuracy of population assignments once self-
ing rates have been estimated.

Under model 1, each sample contains partially selfing
individuals and no population substructure. In Figure 2,
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we report the distribution of estimated posterior mean
selfing rates among replicate data sets for varying levels
of s. With partial self-fertilization (i.e., s . 0), we see that
the distribution of the posterior mean estimates of self-
ing rates falls mostly within the range containing the
true selfing rates 6 0.1. For example, for data simulated
under s ¼ 0.5 the vast majority of the estimated rates
across the 100 replicate data sets lie within ½0.4, 0.6�. It is
also interesting to note that the modes of the distribu-
tions of posterior mean estimates are the true selfing
rates (Figure 2, dashed lines).

Model 2 assumes two subpopulations with equal or
distinct selfing rates split from a common ancestral
population in the recent past (t ¼ 0.5 in units of 2Ne

generations). In Figure 3, we report the distribution of
the posterior estimates of the selfing rates for the two
subpopulations under varying levels of outcrossing. In
comparison to model 1, the variance in estimated self-
ing rates among replicate data sets increased (Figure 3).
Population assignment worked extremely well for this
model with nearly 100% correct assignment probabili-
ties for all individuals in all replicate data sets.

Figures 4 and 5 illustrate the accuracy of our selfing
rate estimation under a more sophisticated population
structure model. By comparing Figure 4 (model 3,
where the sample is drawn from three populations) vs.
Figure 2 (model 1) and Figure 3 (model 2) we can assess
how population structure affects our inference regard-
ing selfing. We note that the width of the distribution of
the posterior mean of population selfing rates increases,
implying that the variance of the estimator becomes
larger and estimation becomes slightly upwardly biased,
potentially due to population misidentification for some
individuals, especially when K ¼ 6 subpopulations are
simulated (Figure 5). It is also important to note that for
the case of a large variance among populations in selfing
rates, a small fraction of replicate data sets converged to
a point with high selfing and low population structure
(i.e., high ‘‘bump’’ near 0.90 in Figure 4D). In summary,
InStruct has high accuracy in estimating selfing rates
under a myriad of selfing rate combinations for K¼ 1, 2,
3, and 6 populations.

Another interesting result from Figures 2–5 is that
regardless of K when the selfing rates are near 0 or 1, the
estimator has a lower variance than when the selfing rate
is near 50%. That is, when a population is nearly

Figure 2.—The posterior distribution of selfing rates esti-
mated from simulations without population structure under
six levels of population selfing rates. Each colored line repre-
sents the density of the posterior mean of selfing rates of 100
simulation runs under a specific selfing rate in the key.

TABLE 1

Parameters used for data simulated under each model

Model Data set no. Subpop. no. Subpop. size Sample size Loci no.
Combinations or distributions

of selfing rates

1 100 1 100 100 100 0, 0.1, 0.3, 0.5, 0.7, 0.9
(0, 0.3), (0, 0.9)

2 100 2 50 100 100 (0.3, 0.3), (0.3, 0.6)
(0.3, 0.9), (0.9, 0.9)
(0.1, 0.1, 0.1), (0.9, 0.9, 0.9)

3 100 3 50 150 100 (0.4, 0.5, 0.6), (0.1, 0.5, 0.9)
(0.25, 0.6, 0.85), (0.05, 0.45, 0.75)

6 50 6 50 300 100 (0.05, 0.3, 0.45, 0.55, 0.75, 0.95)
Ident 1 1 100 100 100 s ¼ 0.3 or s ¼ 0.7
Norm 1 1 100 100 100 logitðsÞ � Nð0; 1Þor � Nð0; 10Þ
Beta 1 1 100 100 100 Bð9; 3Þ or Bð10; 25Þ

Data set number indicates the number of replications to be simulated under a specific model. Subpop. num-
ber indicates the number of subpopulations assumed in the simulation. Subpop. size is the number of individ-
uals belonging to each subpopulation. Sample size means the total number of individuals. Loci number is the
number of unlinked loci genotyped in each individual. Combinations of selfing rates are the different selfing
levels used in the simulation; e.g., (0.3, 0.6) means two subpopulations with selfing rates 0.3 and 0.6, respectively.
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completely selfing or completely outcrossing, the mat-
ing system strongly affects patterns of genetic variation,
which makes it easy to detect and estimate selfing. In
contrast, when selfing rates are moderate and the
population is substructured, the precision of our
estimator decreases as evidenced by the appearance of
multimodal or flat posterior distributions for sk.

We expect the accuracy of our selfing rate estimation
to be influenced by several facets of the data, including

sample size and number of loci. To address this ques-
tion, we compared the coverage of 90% credibility inter-
vals for sk under different combinations for the total
number of individuals sampled and the number of loci
genotyped (see Table 2, 100 data sets per combination).
Several interesting patterns emerged from this analysis.
First, when there is a single population (model 1), the
Bayesian credibility intervals are conservative since al-
most all entries in the table are significantly .90% and

Figure 3.—The posterior
distribution of selfing rates es-
timated from simulations under
model 2 with six combinations
of selfing rates: (A) s ¼ {0.0,
0.3}, (B) s ¼ {0.0, 0.9}, (C)
s ¼ {0.3, 0.3}, (D) s ¼ {0.3,
0.6}, (E) s ¼ {0.3, 0.9}, and
(F) s ¼ {0.9, 0.9}. Each colored
line represents the density of
the posterior mean of a sub-
population selfing rate from
100 simulation runs under a
specific combination of selfing
rates in the key.

Figure 4.—The posterior
distribution of selfing rates es-
timated from simulations under
model 3 with six combinations
of selfing rates: (A) S ¼ {0.4,
0.5, 0.6}, (B) S ¼ {0.1, 0.5,
0.9}, (C) S ¼ {0.1, 0.1, 0.1},
(D) S ¼ {0.25, 0.6, 0.85}, (E)
S ¼ {0.05, 0.45, 0.75}, and (F)
S¼ {0.9, 0.9, 0.9}. Each colored
line represents the density of
the posterior mean of a sub-
population selfing rate from
100 data sets simulated under
a specific selfing rate combina-
tion in the key.
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none has an observed coverage statistically ,90%. Sec-
ond, when we sampled n ¼ 50 individuals per subpop-
ulation and L ¼ 100 loci (first line of all comparisons in
the table), the coverage of the credibility intervals was
well behaved across different population structure sce-
narios except those with extreme differences in sk among
subpopulations. That is, model 1, model 2, and many
combinations in model 3 had excellent coverage. One
exception was model 3 with sk 2 {0.05, 0.45, 0.75} where
the realized coverage is closer to 82% rather than 90%.
Likewise, in model 6 the average coverage among the
five subpopulations with selfing rates ,s¼ 0.95 was only
84% (for the s ¼ 0.95 subpopulation the coverage was
conservative). The third interesting pattern that emerges
from Table 2 is that reducing both sample size per sub-
population and number of loci per genotype tended to
decrease the coverage of the credibility intervals, but
not systematically. That is, in all models investigated, the
coverage of both the n ¼ 10 individuals per subpopu-
lation and L ¼ 100 loci sampled as well as the n ¼ 50
individuals per subpopulation and L ¼ 20 loci sampled
tended to have worse coverage than the standard of n¼
50 individuals and L ¼ 100 loci. There are exceptions,
however, when the coverage for the smaller n treatment
had better (or more conservative) coverage than the
large n treatment. This is probably due to a larger vari-
ance of the selfing rate estimator.

Inference of selfing rates—individual variation models:
Figure 6 shows the results of the DPMM method on a
single typical data set under various models for how u

varies among individuals. We observe that for all the
cases considered, DPMM estimation of the distribution
of selfing rates across 100 individuals approximates the
true distribution well. That is, the mean, the median,

and the mode are mostly centered at their true values,
especially when selfing rates follow a beta distribution
(Figure 6, C and F). It is important to note that the peaky
and multimodal shape of posterior distribution is an
inherent property of the DPMM model as DPMM ge-
nerates finite discrete classes within which individuals
share the same selfing rate and once a large class is
formed, the potential that an individual value belongs
to this class is greatly increased.

A key part of the DPMM method is a choice for the
a-parameter that governs the prior distribution on the
number of classes of selfing rates. Figure 6 summarizes
simulations with various values of a. According to
McAuliffe et al. (2004), for n observations the prior
expected number of classes in the data is �a log n. We
chose values of a within the range ½1=log n;n=log n�,
corresponding to one class for all the observations and
one class per observation, respectively. Smaller values of
a lead to a ‘‘peaky’’ distribution with many values clus-
tered in one class. When a is large, the proportion of
values sampled from the base distribution increases,
resulting in smoother density estimation. Intermediate
values of a tend to classify a reasonable number of values
into each class, generally resulting in a better approx-
imation to the true distribution.

When evaluating the performance of DPMM in esti-
mating the distribution of selfing rates among individ-
uals, a key issue should be considered: each ui parameter
is effectively estimated from one single data point. That
is, the most amount of information one can have in our
model about selfing rate ui is the number of generations
until an outcrossing event gi. Even if gi were known
without error, there would still be high uncertainty in ui

since one has observed only a single geometric random
variable. Therefore, allowing selfing rates to vary among
individuals in the sample when one has little informa-
tion about a particular ui may produce density estimation
that is wildly different from the true distribution. That
is, the inherent uncertainty due to sampling variation
coupled with overshrinkage of parameters (see discussion

below) may lead to shape estimation quite different
from the true density. To address this issue, in supple-
mental Figure 3 (http://www.genetics.org/supplemental/)
we plot the distribution of the difference between the es-
timated selfing rate and its true value of all the individuals
in the simulations of the three individual selfing rate
models assuming a¼ 5. Most of them appear to follow a
nearly normal distribution, with mean 0 and standard
deviation ,0.15 for almost all the parametric simula-
tions conducted. We also report the estimated densities
for 20 data sets simulated under a beta distribution
for selfing rates, using two parameter combinations
in supplemental Figure 4 (http://www.genetics.org/
supplemental/). It appears that the distributions of
estimated selfing rates are similar in shape to the un-
derlying true beta distribution with considerable among-
sample variation.

Figure 5.—The posterior distribution of selfing rates esti-
mated from simulations with six subpopulations of unequal
selfing rates. Each colored line represents the density of
the posterior mean of a subpopulation selfing rate from 50
simulation runs under a specific selfing rate in the key.
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Inference of population assignment for simulated data:
Our accuracy in classifying individuals into populations
is comparable to that of STRUCTURE with the original
model when no self-fertilization exists. For the 100-data-
set replications under model 2 and model 3 at various
levels of selfing, each individual is separated into one of
the major groups appropriately with frequency 0.99.
The accuracy of classification decreases slightly for
model 6 (the assignment proportion is �0.95) as might
be expected with a more complex demographic sce-
nario. One disadvantage of InStruct is the tendency of
merging subpopulations with similar allele frequencies
and similar selfing rates when the data do not provide
sufficient evidence of differentiation. This phenome-
non, which has also been observed in the STRUCTURE-

like algorithm BAPS (Corander et al. 2003) and the
Bayesian clustering algorithm with hidden Markov ran-
dom field (Francois et al. 2006), mainly occurs when
assuming more subpopulations than are represented in
the real data or when sample size per true subpopula-
tion is very small.

Application to rice data: To gauge the performance
of our algorithm on real data, we applied InStruct to 111
single-nucleotide polymorphisms (SNPs) discovered via
direct sequencing across 111 unlinked loci of n ¼ 16
individuals of O. rufipogon, a wild ancestor of the cul-
tivated rice species (A. L. Caicedo, S. H. Willamson,
A. Fledel-Alon, T. L. York, N. Polato, K. M. Olsen,
R. Nielsen, S. McCouch, C. D. Bustamante, and M. D.
Purugganan, unpublished results). Each SNP has two

TABLE 2

Coverage of 90% credible intervals of selfing rates under models 1, 2, 3, and 6 with respect to specific population
size and locus number based on 100 data sets per selfing rate combination (50 data sets for model 6)

Model 1

Sample size Locus no. 0.0 0.1 0.3 0.5 0.7 0.9

100 100 1.00 0.93 0.93 0.912 0.95 0.958
20 100 0.988 0.99 0.92 0.888 0.93 0.92
100 20 0.99 0.958 0.932 0.94 0.924 0.96

Model 2

Sample size Locus no. 0.0 0.3 0.0 0.9 0.3 0.3

100 100 0.976 0.878 0.96 0.94 0.882 0.914
20 100 0.732 0.892 0.734 0.938 0.93 0.91
100 20 0.772 0.99 0.742 0.97 0.95 0.91

Model 2

Sample size Locus no. 0.3 0.6 0.3 0.9 0.9 0.9

100 100 0.91 0.948 0.968 0.924 0.902 0.99
20 100 0.948 0.94 0.88 0.926 0.88 0.98
100 20 0.898 0.9 0.928 0.924 0.894 1.00

Model 3

Sample size Locus no. 0.4 0.5 0.6 0.1 0.5 0.9

150 100 0.948 0.958 0.948 0.832 0.92 0.97
30 100 0.962 0.976 0.916 0.856 0.932 0.86
150 20 0.964 0.97 0.964 0.792 0.868 0.954

Model 3

Sample size Locus no. 0.25 0.6 0.85 0.05 0.45 0.75

150 100 0.89 0.924 0.97 0.816 0.818 0.836
30 100 0.852 0.884 0.896 0.788 0.91 0.892
150 20 0.86 0.97 0.978 0.766 0.972 0.968

Model 6

Sample size Locus no. 0.05 0.30 0.45 0.55 0.75 0.95

300 100 0.800 0.900 0.840 0.800 0.860 1.000

Each data set was run for five independent MCMCs, with 1,000,000 iterations, 500,000 burn-in iterations, and
a thinning interval of 10 iterations (for model 6 one chain per data set). The proposal method for selfing rate
here is the AIS.
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alleles and only one SNP per locus was used in our
analysis. The individuals in the sample were collected
from the wild with 9 sampled from China, 5 from Nepal,
1 from India, and 1 from Laos. We focus on a subset of
the data ½n¼ 91 (78.4%) SNPs� that contains no missing
data. We ran InStruct and STRUCTURE on these data
for five independent chains, each chain with 200,000
iteration steps, 100,000 burn-in, and a thinning interval
of 10 steps, assuming different starting points. Graph-
ical representations of population assignments from
STRUCTURE and InStruct were produced from the
program Distruct (Rosenberg et al. 2002).

When two subpopulations are assumed, the estima-
tion of selfing rates and substructure converged very
well among the five independent chains. The classifica-
tion of individuals is consistent with geographical sep-
aration in that all the individuals from China formed
one major cluster and the other cluster mainly contains
Nepalese individuals. The fact that the Indian individual
is clustered with Nepal is quite reasonable as India is
nearer to Nepal than China geographically and the
Himalayan mountains likely reduce pollen flow to and
from China. The Laos individual falls in between the two
clusters with a larger part of its alleles (91.14%) as likely
of Nepalese origin and �8.86% of Chinese origin. This
classification is almost the same as that of STRUCTURE,
although the proportion of the genome that originates
in each population is slightly different for several indi-
viduals, which might be due to our accounting for self-
fertilization (Figure 7a). One critical difference is the
classification of a Chinese individual that STRUCTURE
predicts as admixed with nearly equal ancestry in the
two clusters. Using InStruct, this same individual is now

classified with high posterior probability 0.999 ½90%
C.I.: (0.996, 1.000)� in the ‘‘Chinese’’ cluster. The lack of
overlap in credibility intervals implies there is signifi-
cant discrepancy in classification of this individual as was
observed in the simulated data presented in Figure 1.
When we ran InStruct assuming three subpopulations,
the convergence rate was poor with some runs converg-
ing on all individuals assigned only two clusters, leaving
the third cluster empty. This is due to the tendency of
the Bayesian clustering algorithm to merge subpopula-
tions with similar allele frequencies. A likely reason for
this in our case is the small sample size of just 16 indi-
viduals and the optimal classification is to assume K¼ 2.

The posterior means of selfing rates for the Chinese
and Nepalese subpopulations under the population
model are 0.697 and 0.484 with 90% confidence in-
tervals (0.553, 0.826) and (0.260, 0.699), respectively.
While the confidence intervals overlap, this is sugges-
tive of potential regional differences in selfing rate for
O. rufipogon. This result should be interpreted with cau-
tion, however, since the Nepalese material was collected
recently from the wild while the Chinese individuals
come mainly from an existing germplasm collection
and may have undergone purification as part of stan-
dard germplasm propagation (S. McCouch, personal
communication). In Figure 7b, we present the results
of running the individual-based model of InStruct that
uses DPMM for density estimation. We note that the
majority of individuals have posterior means for u, the
selfing rate parameter, between 0.5 and 0.7, which is
consistent with previous estimates based on pollen count
(Oka 1988). It is important to note that confidence
intervals for u are much wider under the individual-based

Figure 6.—The distribu-
tions of posterior medians of
selfing rates of 100 individuals
drawn from the Dirichlet pro-
cess mixture model. The ma-
genta dashed lines represent
the true distribution of selfing
rates in the simulation. The
red, green, blue, and yellow
solid lines are the estimated
densities from the Dirichlet
process mixture model with
scaling parameters a ¼ 1, a ¼
5, a ¼ 10, and a ¼ 20, respec-
tively. The individual selfing
rates were simulated under
three different scenarios in
three columns: (1) model ident
(A) S¼ 0.3 and (D) S¼ 0.7, (2)
model norm (B) logitðSÞ �
N ð0; 1Þ and (E) logitðSÞ �
N ð0; 10Þ, and (3) model beta
(C) S � beta(9, 3) and (F) S �
beta(10, 25).
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model as compared to the population-based estimate of
selfing rates.

DISCUSSION

In this article, we present a modification of the popular
Bayesian clustering program STRUCTURE (Pritchard

et al. 2000) for inferring population substructure and self-
fertilization simultaneously. Using extensive simulations
with four distinct demographic models (K¼ 1, 2, 3, 6), we
demonstrate that our method can accurately estimate
selfing rates in the presence of population structure in
the data. Additionally it can classify individuals into their
appropriate subpopulations without the assumption of
Hardy–Weinberg equilibrium within subpopulations.

It is important to note that the accuracy of selfing rate
estimation is influenced by multiple factors, including
sample size and number of loci, with decreased precision
when they are small, as is illustrated in Table 2. Likewise,
we find that the complexity of the true demographic
history underlying data (e.g., the number of subpopu-
lations derived from a common ancestral population)
also influences accuracy. In general, more complicated
models lead to decreased precision in selfing rate esti-
mation. For example, when we simulated six subpopula-
tions split from one ancestral population, the coverages
of 90% credible intervals of selfing rates are near 85%.

As with other methods for inference of population
structure, InStruct explores a complex multimodal like-
lihood surface using a stochastic search algorithm. This
means that the program may ‘‘get stuck’’ in suboptimal
parts of the parameter space. We, therefore, encourage
users to run several chains and compare the expected
log-likelihood as with other MCMC schemes. In prac-
tice, we have observed that InStruct infrequently merges
subpopulations, especially ones with correlated allele
frequencies, which can result in ‘‘empty’’ clusters and
poor convergence in population assignments and selfing
rate estimation. This phenomenon has been described
previously for other STRUCTURE-like algorithms such
as BAPS (Corander et al. 2003) and the Bayesian clus-
tering algorithm with hidden Markov random field
(Francois et al. 2006). One idea we have explored is
to use simulated annealing to ‘‘heat and cool chains’’ so
as to allow movement among local maxima. We have
also investigated stopping MCMC chains with ‘‘empty
clusters,’’ where an empty cluster contains less than one
expected individual after sufficient burn-in. While this
suggestion is ad hoc and in a sense does not solve the
poor convergence problem, we have found that it tends
to control against merging populations into an extreme
pathological case of K ¼ 1 with high selfing for data
simulated under K . 1.

We employ the Dirichlet process mixture model to
estimate how individual selfing rates vary among individ-
uals in the sample. Instead of assuming a distribution for
selfing rates among individuals and estimating pa-
rameters of the model, we use a Bayesian version of non-
parametric density estimation to ‘‘learn’’ the selfing rates
from the data. We anticipate that the individual specific
model will facilitate plant breeding by providing a fairly
accurate estimate of individual selfing rates divorced
from the consequences of population structure. There
are a few statistical caveats, however, that we raise.

In many statistical inference problems, the number of
parameters to be estimated is much smaller than the
sample size. Therefore, ‘‘large-sample’’ estimators such as
maximum likelihood or method-of-moments have good
statistical properties (e.g., unbiased, consistent, efficient,
etc.). In our case, we wish to estimate a selfing rate
parameter for each individual in the sample based on a
single (unobserved) data point, namely, G, the number

Figure 7.—(a) The Distruct plot of population assignment
for n ¼ 16 rice accessions assuming K ¼ 2 from STRUCTURE
and InStruct. The two clusters are represented by pink and
light blue. For InStruct, the corresponding selfing rates of
subpopulations are indicated at the top. (b) Estimated selfing
rates under the individual model using the Dirichlet process
prior model. The points represent the posterior mean of in-
dividual selfing rates and their different shapes indicate the
countries where that individual was collected: squares with x’s
inside represent China, diamonds represent Nepal, circles
represent India, and triangles indicate Laos. The x-axis repre-
sents the index of 16 individuals collected from the wild. The
red lines across the points represent the 90% posterior con-
fidence intervals of individual selfing rates.
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of generations of selfing in the genealogy of the indi-
vidual until an outcrossing event looking back in time.
For this type of inference problem, standard large-sample
statistical approaches are not accurate and approaches
that ‘‘share’’ information across related parameters (so-
called ‘‘shrinkage’’ estimators) often have better perfor-
mance. That is, when estimating the selfing rate of a
given individual i we use information regarding selfing
rates for all other individuals in the sample and iterate
this procedure. Shrinkage methods reduce (or shrink)
the variance of estimated parameters by drawing out-
liers nearer to the mean value. The drawback to such an
approach is that we may sometimes ‘‘overshrink’’ and
downwardly or upwardly bias the estimation for some in-
dividuals with selfing rates in the tails of the distribution.

We find that the distribution of estimated selfing rates
minus the corresponding true values has the shape of
normal distribution with mean zero and standard devi-
ation �0.15 under various simulated individual models
as shown in supplemental Figure 3 (http://www.genetics.
org/supplemental/). Estimation is more accurate when
no substructure exists or subpopulations have similar
selfing rates, compared to subpopulations with very dis-
tinct selfing rates as the Dirichlet process mixture model
tends to find a local maximum and thus cluster indi-
vidual data points into big categories of selfing rates.
When DPMM is applied to data sets simulated with two
subpopulations and two distinct selfing rates, it some-
times peaks at two true selfing rates (supplemental Fig-
ure 5D at http://www.genetics.org/supplemental/) or
peaks at a value in the middle of the two true selfing
rates and clusters all individual values into that class
(supplemental Figure 5, A–C). It is important to note
that the DPMM model is a nonparametric method of
density estimation, which is less efficient than the pa-
rametric estimation approach and thus takes longer to
reach stationary states.

Due to the structure of the likelihood function under
the individual model and the limitation of data avail-
able, confidence intervals for individual selfing rates will
likely be large unless the posterior mean or median is
close to complete selfing (ui ¼ 1). The reason for this is
that the most information one can have in our model
regarding ui is the true number of generations until
outcrossing gi. Depending on the magnitude of gi, many
possible values ui may be consistent with the observed
data. For example, if there has been only one genera-
tion since an outcrossing event (gi¼ 1), this observation
is consistent with nearly the whole of the interval ½0, 1)
and the posterior mean for ui j gi¼1 is 1

3 under a uniform
prior for ui.

Another practical issue for our approach is how to
choose the appropriate scaling parameter and base
distribution for inference under the individual selfing
rate model (Figure 6). If the scaling parameter is small,
then the expected number of selfing rate classes is small,
leading to the peaky distribution of selfing rates. If the

scaling parameter is large, then one class contains only
one data point, which adds much uncertainty to esti-
mation, leading to biased estimation of the underlying
distribution. According to McAuliffe et al. (2004), the
nonparametric estimation method of the scaling pa-
rameter and base distribution can be incorporated into
the MCMC scheme, which may facilitate estimation,
or a hierarchical uninformative prior distribution can be
placed on the scaling parameter and base distribution
to integrate out the uncertainty of estimation on these
nuisance parameters.

Although the estimation accuracy is dependent on
multiple factors, we expect that this model will have wide
applications in many aspects of sequence analysis as it
has great flexibility for analyzing multilocus marker data.
However, several points need to be addressed with respect
to improving the basic model presented here.

First, InStruct assumes loci are unlinked and condi-
tionally independent given model parameters. It is
known that pairwise linkage disequilibrium increases
with selfing and can extend very far in highly selfed
organisms (Nordborg 2000). The flip side of this is that
selfing may leave a strong linkage disequilibrium (LD)
signal that may be exploited for further refinement of
our inference of individual selfing rates. Therefore, link-
age disequilibrium should be incorporated into this
model as in a new version of STRUCTURE (Falush et al.
2003). One approach might be to include a linkage map
for the markers explicitly in the model with predictions
from population genetic theory regarding how selfing
affects LD among loci conditional on known recom-
bination rates. A second limitation of our model is that
it is applicable only to diploid individuals. It would be
more practical, particularly for inference in plant pop-
ulations, to extend the model to polyploid individuals.
Two complications on this front are that the number of
genotypes at a polyploid locus exponentially increases
with the ploidy of the genome and two types of polyploid
exist, autopolyploid and allopolyploid, which increase
the complexity of calculating genotype frequencies for
each locus.

The application of InStruct to data from the partially
selfing wild relative of domesticated rice O. rufipogon
gives results consistent with geographic sampling and
with the program STRUCTURE. Our estimates of the
selfing rates for each subpopulation overlap, suggesting
an outcrossing rate for wild rice near 50%. Partial out-
crossing has several potential evolutionary advantages
in regard to either complete outcrossing or complete
selfing. For example, advantageous mutations can be
fixed in the population at a faster rate as compared
to outcrossing. Likewise, when mates are rare (e.g., in an
adverse environment), selfing ensures the likely survival
of the lineage. Last, partial outcrossing can purge the
population of deleterious mutations without inducing a
high genetic load. We hope the development of InStruct
will allow estimation of selfing rates among natural plant
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populations, enabling the community to test hypotheses
regarding the evolutionary and ecological context for
selfing rate evolution.
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APPENDIX: DETAILS OF THE MARKOV CHAIN MONTE CARLO ALGORITHM

Initiation of MCMC: Under the population-specific model, the initial states of population selfing rate parameters sk

are generated from the uniform distributionU½0; 1�. The initial number of generations until an outcrossing event gi for
each individual is drawn independently by sampling from the geometric distribution with unique uniform random
probabilities of success. Under the individual selfing model, the ui’s are first drawn from the Dirichlet process prior
and then the gi’s are sampled from the geometric distribution with a probability of success 1� ui. Initiation of Z and Q
is congruent with Pritchard et al. (2000).

Updating of MCMC: In the blockwise updating scheme of MCMC, the update of P, Z, and Q follows Pritchard

et al. (2000). The rest of the parameters are updated with the single-component Metropolis–Hastings algorithm as
detailed below:

a. Update S:
i. At the population level, selfing rates are proposed with either the BRS or the AIS. For the BRS, we update the

selfing rate vector S(m) by using Metropolis sampling with a K-dimensional uniform proposal distribution
centered on the current vector of population selfing rates. That is, a proposed selfing rate sk

* for population k
is drawn from Uðsðm�1Þ

k � d; sðm�1Þ
k 1 dÞ with back reflection in ½0, 1�, where d is a tuning parameter.

For the AIS, we assume three classes of states for the selfing rate parameter: s0 equivalent to complete
outcrossing, s(0,1) that denotes the case of partial outcrossing (s 2 (0, 1)), and s1 that represents complete
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selfing. Let p0 represent the probability of proposing a jump to state s0 on the basis of the current value of s,
p(0,1) be the probability of proposing a jump to state s(0,1) on the basis of current s, and p1 be the probability of
proposing a jump to state s1 on the basis of current s. In our model, we use the probabilities in the table below
to calculate the proposal density q(s, s*), where the first column in the table shows three starting states for
selfing rates and the first row represents three ending states,

qðs; s*Þ ¼ p0d0ðs*Þ1Uð0; 1Þ3 pð0;1Þð1� d0ðs*ÞÞð1� d1ðs*ÞÞ1 p1d1ðs*Þ; ðA1Þ

where di( j) is a Kronecker delta function defined by

dið jÞ ¼
1 if i ¼ j
0 if i 6¼ j :

�

Since the prior on S is uniform and the proposal of the BRS is symmetric, the Metropolis acceptance probability
r depends only on the ratio of the likelihood function at the two points proposed, sk

* and current sk:

r ¼ min

�
1;

LðG j s*
k ; sð�kÞ; Q Þ

LðG j S ; Q Þ

�
:

The allele frequencies P or population assignments Z are ignored from the above formula as the relevant
likelihood does not depend on them conditional on G and Q.

For the AIS, the Metropolis–Hastings ratio needs to multiply a proposal term:

r ¼ min

�
1;

LðG j s*
k ; sð�kÞ; Q Þqðsk ; s*

k Þ
LðG j S ; Q Þqðs*

k ; skÞ

�
:

Since we assume individuals are independently sampled and use the formula (3), the likelihood is

LðG j S ; Q Þ ¼
YN
i¼1

Pðgi j uiÞ ¼
YN
i¼1

ð1� uiÞugi�1
i ;

where ui is calculated as the expected selfing rate for individual i using Equation 7.
The rationale for needing two samplers is that when the selfing rate value of our MCMC is near the

boundaries, one needs to be able to jump in and out of the states for complete selfing (s ¼ 1) or complete
outcrossing (s¼ 0). As we illustrate below, the AIS is not as efficient as the BRS, so when the MCMC chain is not
near sk ¼ 0 or sk ¼ 1, the BRS is recommended.

ii. Updating of individual selfing rates is described in the Modeling selfing section.

b. Update G: We choose an independent sampler to update each component of G. Specifically, the proposed
update gi

* is drawn from a geometric distribution independently for each individual gi
* � Gð1� uiÞ, where u

ðmÞ
i is

calculated using formula (7). And an upper bound 50 is placed on gi
* to facilitate the computation as the value of

gi . 50 does not affect likelihood calculation much compared to the value of 50. Since the proposal distribution
we employ is an independence sampler and the likelihood does not depend on the current values of S or Q,
the Metropolis–Hastings ratio is thus

r ¼ min 1;
LðX j g *

i ; g ð�iÞ; Z ; PÞ
LðX jG ; Z ; PÞ

� �
;

where L(X jG, Z, P) is the likelihood Equation 4.

Joint inference of inbreeding coefficients and substructure: Estimating inbreeding coefficients while accounting
for population structure is done in a similar manner to inference of selfing rates, except that there is no ‘‘G’’

s p0 p(0,1) p1

s ¼ 0 0.50 0.50 0.0
s 2 (0, 1) 0.05 0.90 0.05
s ¼ 1 0.0 0.50 0.50
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component and the likelihood of data is calculated using Wright’s formula. This likelihood now depends on the
inbreeding coefficients F and allele frequencies P and assignment of alleles Z,

LðX jP ; F ; ZÞ ¼
YN
i¼1

YL
l¼1

Pðxil : j F ; zil :; p:l :Þ; ðA2Þ

where P(xil. j F, zil., p.l.) is the genotype frequency of individual i at locus l. If the two alleles for this genotype are from
different subpopulations (i.e., zil1 6¼ zil2), we assume the genotype frequency is the product of the population allele
frequencies (amounting to random mating among populations). If the population assignment is the same, our
probabilities follow directly from basic population genetic theory. The probability of homozygosity for the A allele is a
function of the general inbreeding coefficient in the population assigned to individual i at position l ð fzil :

Þ,

Pðxil : ¼ AA j fzil :
; zil :; p:l :Þ ¼ p2

A 3 ð1� fzil :
Þ1 pAfzil :

; ðA3Þ

where pA is the allele frequency of A in its assigned subpopulation. If individual i is heterozygous at locus l (suppose
the genotype is Aa at that locus), the genotype probability is

Pðxil : ¼ Aa j fzil : ; zil :; p:l :Þ ¼ 2pApað1� fzil :Þ: ðA4Þ

We use the BRS and AIS to propose inbreeding coefficients and then accept it with the Metropolis–Hastings
algorithm.

We find that the BRS is very efficient and easily tunable, but has the disadvantage that it can never attain the
boundary values of complete outcrossing (0.0) or complete selfing (1.0). The AIS can generate proposal draws for any
value in the interval ½0, 1�, but, as implemented, the rejection rate for AIS is high. One can observe from the
convergence graphs (see supplemental Figure 2 at http://www.genetics.org/supplemental/) that the patterns of
selfing rate updating are remarkably different between the two methods. This is likely because a fraction of new
proposed selfing rates by AIS are randomly sampled from the uniform distribution on ½0, 1�, which have low a priori
probability of explaining the data. The AIS sampler can easily get stuck in one value for several iterations while BRS
tends to reject new proposed jumps much less often (interestingly the convergence efficiency of AIS is similar to that of
BRS). The importance of using AIS near the boundaries is illustrated in supplemental Figure 6 at http://
www.genetics.org/supplemental/, where we note that the BRS density for zero selfing rate is strongly right shifted
as compared to AIS. In actual application of InStruct to real data, the selfing rate proposal density should be chosen
according to context and necessity.
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