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ABSTRACT

Pleiotropy refers to the observation of a single gene influencing multiple phenotypic traits. Although
pleiotropy is a common phenomenon with broad implications, its molecular basis is unclear. Using
functional genomic data of the yeast Saccharomyces cerevisiae, here we show that, compared with genes of
low pleiotropy, highly pleiotropic genes participate in more biological processes through distribution of
the protein products in more cellular components and involvement in more protein–protein interactions.
However, the two groups of genes do not differ in the number of molecular functions or the number of
protein domains per gene. Thus, pleiotropy is generally caused by a single molecular function involved in
multiple biological processes. We also provide genomewide evidence that the evolutionary conservation of
genes and gene sequences positively correlates with the level of gene pleiotropy.

PLEIOTROPY refers to the observation that a sin-
gle gene affects two or more distinct and seem-

ingly unrelated traits. Pleiotropy is one of the most
commonly observed attributes of genes, with broad im-
plications in genetics, evolution, development, aging,
disease, and drug discovery (Williams 1957; Wright

1968; Barton 1990; Hodgkin 1998; Waxman and Peck
1998; Brunner and van Driel 2004; Otto 2004;
Promislow 2004; van de Peppel and Holstege 2005).
Genes of high pleiotropy are expected to be under
strong stabilizing selection because they affect multiple
traits (Hodgkin 1998). Pleiotropy also causes compro-
mises among adaptations of different traits, because a
genetic change beneficial to one trait may be del-
eterious to another (Barton 1990; Otto 2004). It is
believed that this property underlies many fundamen-
tal principles and phenomena in biology, including
senescence, trade-off, and cooperation (Williams 1957;
Foster et al. 2004; MacLean et al. 2004). For example,
it was proposed that mutant genes advantageous to
development and reproduction are deleterious after
the reproductive age and cause senescence, which
may explain why all species have a limited life span
(Williams 1957). Social amoeba Dictyostelium discoi-
deum can aggregate during starvation where some cells
die to form a stalk that holds the other cells aloft as
reproductive spores (Strassmann et al. 2000). A recent
study showed that deleting the gene dimA in D. dis-
coideum allows cells to avoid death, but leads to a great
reduction in spore production (Foster et al. 2004).
Hence, the pleiotropic effects of dimA stabilize the

cooperation among amoeba. Pleiotropy also has im-
portant implications in human diseases. For instance,
mutations in the homeobox gene ARX cause am-
biguous genitalia and lissencephaly (whole or parts
of the surface of the brain appear smooth) (OMIM
at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼
OMIM). Mutants of AMT, a phosphatidylinositol-3 ki-
nase gene, show the symptoms of cerebellar ataxia,
telangiectases (visibly dilated blood vessel on the skin or
mucosal surface), immune defects, and a predisposi-
tion to malignancy (OMIM).
A central question about pleiotropy is whether the

pleiotropic effects of a gene are conferred by multiple
molecular functions of the gene or by multiple con-
sequences of a single molecular function (Dudley et al.
2005; van de Peppel and Holstege 2005). A typical
example of a pleiotropic gene with multiple molecular
functions is the mammalian serum albumin, which is
well known for binding fatty acids and toxic metabo-
lites, but it is also involved in the oxidation of nitric
oxide (Rafikova et al. 2002). By contrast, the yeast
gene HIS7 encodes glutamine amidotransferase, yet
this single catalytic activity is used in both histidine bio-
synthesis and purine nucleotide monophosphate bio-
synthesis. Although the molecular basis of pleiotropy
may vary among genes, it is still important to ask
whether one of the above two mechanisms explains
the majority of pleiotropic genes in a genome. To ad-
dress this question, we take advantage of a recently
generated genomewide data set of gene pleiotropy from
the yeast Saccharomyces cerevisiae (Dudley et al. 2005).We
show that the pleiotropic effects of a gene are not
usually conferred by multiple molecular functions of
the gene, but by multiple consequences of a single
molecular function.
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MATERIALS AND METHODS

The S. cerevisiae gene pleiotropy data (Dudley et al. 2005)
were downloaded from http://arep.med.harvard.edu/pheno/
default.htm. The data set included information about the
growth rate of 4710 yeast homozygous single-gene deletion
mutants in 21 adverse conditions, compared to the growth
rate under the control (YPD medium) condition. These 4710
genes were all nonessential, meaning that the homozygous
deletion strains could grow on rich media. See Dudley et al.
(2005) for detailed information about the 21 conditions. The
high-confidence subset of the data was used. In other words,
slow growth was inferred only when both replicates showed
slow growth. We treated strong growth defect and moderate
growth defect equally. In some cases, several mutants in which
the same gene was deleted showed different phenotypes or
deletion mutants showed higher growth rates under adverse
conditions than under the control condition. Genes involved
in either of the above two situations were excluded from our
analyses. The final data set included 4494 genes, among which
741 genes exhibited growth defects in at least one of the 21
tested adverse conditions compared with the control condi-
tion. The analysis was repeated when the 21 conditions were
classified into nine condition groups according to their dif-
ferences from one another on the basis of their effects on
gene phenotypes (Dudley et al. 2005). The nine condition
groups were YPGly and YPLac; benomyl and MPA; FeLim,
paraq, and YPRaff; Sorb, UV; CaCl2, cyclohex, and HU; CAD
and EtOH; Caff and rap; lowPO4, pH 3, NaCl, and YPgal; and
HygroB. A gene was considered to have a phenotypic effect in
a condition group if it had a phenotypic effect in at least one
of the constituents of the condition group.

The yeast Gene Ontology (GO) annotations were down-
loaded from ftp://genome-ftp.stanford.edu/pub/yeast/
literature_curation. Genes with the ‘‘unknown’’ annotations
(molecular function: 0005554; biological process: 0000004;
cellular component: 0008372) were excluded and only non-
redundant annotations were considered. Yeast Enzyme Com-
mission (EC) codes were downloaded from ftp://ftpmips.gsf.
de/yeast/catalogues/eccat/eccat_data_20062005. Only genes
with at least one EC code were considered. The predicted
functional domains of yeast proteins were obtained from
Munich Information Center for Protein Sequences (MIPS)
(ftp://ftpmips.gsf.de/yeast/catalogues/motifs/) and genes
with no domain predictions were excluded. The number of
genes directly regulated by each transcriptional factor was ob-
tained from the ChIP–chip (chromatin immunoprecipitation
followedby the identificationof immunoprecipitated genomic
fragments through the use of whole-genome DNA chips) ex-
periments (Harbison et al. 2004). The yeast protein–protein
interaction (PPI) data were compiled by Han and colleagues,
who used stringent criteria to avoid false-positive data points
(Han et al. 2004). Proteins with no known PPIs were ex-
cluded. The yeast stable protein complex data used here were
downloaded from ftp://genome-ftp.stanford.edu/pub/yeast/
literature_curation/go_protein_complex_slim.tab. We found
that genes involved in stable protein complexes were more
pleiotropic than genes not involved in protein complexes (P,
10�4, Mann–Whitney U-test).

For the evolutionary analysis, we conducted genome-
wide all-against-all BLASTP searches (E-value cutoff ¼ 10�10)
between 5773 yeast and 13,434 fruit fly (Drosophila mela-
nogaster) proteins, which were downloaded from the Saccharo-
myces Genome Database (http://www.yeastgenome.org/) and
ENSEMBL (http://www.ensembl.org), respectively. Similar
BLASTP searches were also conducted between the yeast
proteins and 19,873 nematode (Caenorhabditis elegans) pro-
teins and between the yeast proteins and 4999 fission yeast

(Schizosaccharomyces pombe) proteins, respectively. The nema-
tode protein sequences were obtained from ENSEMBL,
whereas the fission yeast protein sequences were downloaded
fromhttp://www.sanger.ac.uk/Projects/S_pombe.Wethencon-
sidered the 4494 yeast genes with pleiotropy information.
Nonsynonymous nucleotide distances (dN) between ortholo-
gous genes of the yeasts S. cerevisiae and Saccharomyces bayanus
were obtained from Zhang and He (2005). We measured the
rank correlation between dN and gene pleiotropy. Further-
more, we measured the partial rank correlation between dN
and gene pleiotropy when the expression level of the gene was
controlled for.

RESULTS

Molecular functions: In the yeast gene pleiotropy
data set that we use here (Dudley et al. 2005), the level
of pleiotropy was measured for each yeast gene by the
number of lab conditions (of the 21 conditions) under
which the homozygous gene-deletion strain showed sig-
nificantly slower growth than under the control con-
dition. We first examine whether the level of gene
pleiotropy is correlated with the number of molecular
functions per gene. We use the molecular function
annotation in GO (Ashburner et al. 2000), which
describes activities, such as catalytic or binding activities,
at the molecular level. A gene may possess one or more
than one activity. For example, BMH1 shows both DNA-
binding and protein-binding activities, thus having two
molecular functions. Nevertheless, we find no correla-
tion between the level of pleiotropy and the number of
molecular functions among 2386 yeast genes for which
both pleiotropy information and GO annotation are
available (Spearman’s rank correlation coefficient r ¼
�0.01, two-tailed P ¼ 0.57). We also group genes ac-
cording to their level of pleiotropy, but find different
groups to have similar mean numbers of molecular
functions (Figure 1A). Next, we examine EC codes for
all yeast enzymes. EC codes are a numerical classifica-
tion scheme for enzymes based on the chemical re-
actions that they catalyze. Although the majority of
enzymes have only one EC code, some have more
than one code because they catalyze multiple different
chemical reactions. For instance, THI6 is both a
thiamine–phosphate diphosphorylase (EC 2.5.1.3) and
a hydroxyethylthiazole kinase (EC 2.7.1.50). However,
no significant correlation is observed between the num-
ber of EC codes and the level of pleiotropy among
917 genes for which both EC and pleiotropy informa-
tion is available (r ¼ �0.06, P ¼ 0.09; see also Figure
1B). Furthermore, there is no correlation between the
number of protein domains per gene and the level of
gene pleiotropy (r ¼ 0.01, P ¼ 0.62; see Figure 1C).
Thus, all three measures of molecular functions in-
dicate that gene pleiotropy is not attributable to an
excess of molecular functions.

Biological processes: We then investigate the rela-
tionship between pleiotropy and the number of bio-
logical processes in which each gene participates, again
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usingGO. AGO-annotated biological process is series of
events accomplished by one ormore ordered assemblies
of molecular functions, such as pyrimidine metabo-
lism or a-glucoside transport (Ashburner et al. 2000). A
gene may participate in one or multiple biological pro-
cesses. Not unexpectedly, a significant positive correla-
tion exists between the level of gene pleiotropy and the
number of biological processes in which the gene par-
ticipates (r ¼ 0.12, P , 10�10). When the genes are
grouped by the level of pleiotropy, we observe a clear
trend that the mean number of biological processes per
gene increases with pleiotropy (Figure 2A). We also
observe a weak, but significant, positive correlation be-
tween the number of cellular components where the
product of a gene is located (as annotated by GO) and
the level of gene pleiotropy (r ¼ 0.05, P , 0.003; see
Figure 2B). Here, a cellular component refers to a
component of a cell but with the proviso that it is part
of some larger object, which may be an anatomical
structure or a gene product group (Ashburner et al.
2000). We hypothesize that the correlation between the
number of cellular components and pleiotropy arises
because gene products distributed amongmore cellular
components have opportunities to participate in more
biological processes. Indeed, the number of cellular
components and the number of biological processes are
significantly correlated (r ¼ 0.15, P , 10�14). After we
control for the number of biological processes, the
correlation between the number of cellular compo-
nents and pleiotropy is no longer significant (r ¼ 0.03,
P ¼ 0.09). On the contrary, the correlation between the
number of biological processes and pleiotropy is re-
duced only slightly by the control of the number of
cellular components (r ¼ 0.11, P , 10�8). These results
indicate that gene pleiotropy is likely due to multiple
biological processes in which the gene participates, and
the multiple participations are realized in part by hav-
ing the gene product distributed into multiple cellular
components.
Protein–protein interactions: Genomewide studies

showed that most genes function by PPIs (von Mering

et al. 2002; He and Zhang 2006). We thus hypothesize
that many pleiotropic genes participate in multiple
biological processes through engaging inmultiple PPIs.
To test this hypothesis, we analyze a recently compiled
yeast PPI data set (Han et al. 2004). We find that the
number of PPIs that a gene has is positively correlated
with its level of pleiotropy (r¼ 0.19, P, 10�6; see Figure
3A). Although pleiotropic genes also tend to be in-
volved in stable protein complexes (see materials and
methods), the correlation between the number of PPIs
and the level of pleiotropy remains significant when pro-
teins involved in protein complexes are removed (r ¼
0.16, P ¼ 0.0015; see Figure S1 at http://www.genetics.
org/supplemental/). Furthermore, from the yeast PPI
network we identify 106 pairs (n) of interacting proteins
that share at least one phenotype (i.e., condition under

Figure 1.—Gene pleiotropy is not due to an excess of
molecular functions per gene. Mean numbers of (A) GO-
annotated molecular functions per gene, (B) EC codes per
gene, and (C) protein domains per gene for genes of differ-
ent levels of pleiotropy. Pleiotropy is measured by the number
of adverse conditions (of 21 tested conditions) under which
the homozygous gene-deletion strain shows significantly
slower growth than under the control condition. For the un-
binned data, the rank correlation coefficient is �0.01 (P ¼
0.57), �0.06 (P ¼ 0.09), and 0.01 (P ¼ 0.62) between pleiot-
ropy and the numbers of molecular functions, EC codes, and
protein domains, respectively. The numbers of genes in the
five bins are 1890, 193, 164, 68, and 71, respectively, in A;
755, 64, 60, 18, and 20, respectively, in B; and 1213, 105,
89, 32, and 33, respectively, in C. Error bar shows one standard
error of mean.
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which slow growth is observed). The number n between
random pairs of genes can be estimated by randomly
rewiring the yeast PPI network while keeping the num-
ber of interactions constant for every protein. The
average n from 10,000 randomly rewired PPI networks
is 35.9, with none of the 10,000 n values $106 (Figure
3B). Thus, interacting proteins share phenotypic effects
significantly more often than by chance (P , 10�4),
suggesting that PPIs underlie some phenotypic effects
of genes. We also identified 15 cases in which a focal
gene shares different phenotypes with different inter-
acting partners, indicative of pleiotropy arising from
multiple PPIs. Figure 3C shows one example in which
the seven phenotypes of the focal gene are shared
with four different PPI partners. It should be pointed
out that the different fitness effects of different gene
deletions were controlled for when the yeast gene

phenotypic data were generated (see materials and

methods), so the observed relationship between plei-
otropy and the number of PPIs is not due to the fact that
genes with more PPIs tend to show detectable pheno-
types upon deletions ( Jeong et al. 2001; He and Zhang
2006).

We reason that having multiple PPIs contributes to
gene pleiotropy because a gene can participate in mul-
tiple biological processes through different PPIs. Be-
cause two randomly picked genes have only a negligible
chance (1.56%) to share a biological process, biological
processes shared between interacting proteins are likely
dependent on their interaction, although the biological
processes of some genes may have been inferred from
the PPI information. We find a strong positive correla-
tion between the number of PPIs that a gene has and
the total number of nonredundant biological processes
that the gene shares with its interacting partners (r ¼
0.33; P , 10�18). This result provides strong evidence
that at least one of the molecular mechanisms by which
highly pleiotropic genes participate in more biological
processes is by multiple PPIs. Another potential mech-
anism is protein–DNA interaction.We find that although
highly pleiotropic transcription factors do regulate more
target genes on average, the correlation is not statisti-
cally significant (r ¼ 0.14, P ¼ 0.22). This result, how-
ever, could be due to the lack of statistical power, as only
83 transcriptional factor genes are included in our data
set (see materials and methods). In an earlier study,
Promislow (2004) found a positive correlation be-
tween the number of PPIs and gene pleiotropy. How-
ever, his gene pleiotropy was not directly measured, but
was inferred from the number of functional classifica-
tions listed in MIPS. In effect, his finding was a cor-
relation between the number of PPIs and the number of
biological processes.

DISCUSSION

By conducting a genomewide analysis of the relation-
ship between yeast gene pleiotropy and gene func-
tion, we discovered that gene pleiotropy is generally
achieved by the use of a single molecular function in
multiple biological processes, which is realized in part
by the distribution of the gene product into multiple
cellular components and by participation of the gene
in different protein–protein interactions. Our analysis
has several potential caveats. First, the gene pleiotropy
data set analyzed here is not large. It includes only
21 conditions, and only 741 genes show phenotypic ef-
fects in at least one condition. Second, the 21 con-
ditions tested for each gene-deletion strain may not
be completely independent, which may lead to biased
estimates of gene pleiotropy. This potential bias, how-
ever, should not affect our results as the bias applies
to all genes equally. In fact, our main conclusion still
holds when wemerge the 21 conditions into nine highly

Figure 2.—Gene pleiotropy correlates with (A) the num-
ber of GO-annotated biological processes and (B) the num-
ber of GO-annotated cellular components into which gene
products are distributed. Pleiotropy is measured by the num-
ber of conditions under which the homozygous gene-deletion
strain shows significantly slower growth than under the con-
trol condition. For the unbinned data, the rank correlation
coefficient is 0.12 (P , 10�10) and 0.05 (P , 0.003) between
pleiotropy and the numbers of biological processes and cellu-
lar components, respectively. The numbers of genes in the
five bins are 2209, 244, 189, 88, and 92, respectively, in A
and 2799, 268, 196, 92, and 95, respectively, in B. Error bar
shows one standard error of mean.
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independent condition groups and repeat the analyses
(see materials and methods and Figures S2–S4 at
http://www.genetics.org/supplemental/). Third, because
yeast genes do not undergo alternative splicing, it is un-
known whether alternative splicing is an important fac-
tor contributing to pleiotropy in species with prominent
alternative splicing. Similarly, it is unknown whether
pleiotropy could arise from gene expression in mul-
tiple tissues of multicellular organisms. Fourth, some of
the GO biological processes may have been annotated
by the yeast phenotypes upon gene deletion, although
the exact overlap between the GO annotation and
the current gene pleiotropy data (Dudley et al. 2005)
is hard to assess. But, at any rate, the positive correlation
between gene pleiotropy and the number of biologi-
cal processes is what one should expect, even when
GO annotation is completely independent from the
gene pleiotropy data. The critical finding of our analysis
is the lack of correlation between pleiotropy and the
number of molecular functions, which is used to dis-
tinguish between the two competing hypotheses of
themolecular basis of gene pleiotropy. Finally, although
the functional annotations such as the GO terms, EC
codes, and PPIs are much more complete and reliable
for yeast than for other model organisms, false-positive
and/or false-negative errors may still exist. These errors
may in part explain why some of the statistically sig-
nificant correlations are of small magnitudes. Further-
more, the errors could potentially limit our ability to
discover true relationships. However, the lack of positive
correlation between gene pleiotropy and the number
of molecular functions is found for all three different

measures of molecular functions and thus is likely to
be real.
To test the robustness of our results, we analyzed

another yeast gene pleiotropy data set (Parsons et al.
2004). In this data set, the growth rate of each single-
gene deletion strain was measured in the presence and
absence of 1 of 12 diverse inhibitory compounds. The
pleiotropic level of a gene is defined by the number
of compounds that inhibit the growth of the deletion
strain. Similar to the above results, we do not find a
significant correlation between the number of GO-
defined molecular functions and the pleiotropic level
of a gene (r ¼ 0.03, two-tailed P ¼ 0.13, n ¼ 2386; see
Figure S5a at http://www.genetics.org/supplemental/
for binned data). In contrast, a significant positive cor-
relation between the number of GO-defined biological
processes and pleiotropy is observed (r ¼ 0.13, two-
tailed P , 10�9, n ¼ 2822; see Figure S5b at http://
www.genetics.org/supplemental/ for binned data). Thus,
our conclusion on the molecular basis of yeast gene
pleiotropy appears robust for different data sets. At
this time, however, no genomewide data sets of gene
pleiotropy are available for other organisms, making it
difficult to conclude whether the mechanisms revealed
from the yeast apply to all organisms.
Revelation of the molecular basis of pleiotropy has

several implications. Much effort has been employed to
identify alleles of a pleiotropic gene, each of which
affects one of the many phenotypic effects of the gene.
This strategy deserves reevaluation because, if the pleio-
tropic effects of a gene are usually due to the same
molecular function, it would be difficult or at least

Figure 3.—Multiple PPIs underlie
gene pleiotropy. (A) Gene pleiotropy
correlates with the number of PPIs per
gene. Pleiotropy is measured by the
number of conditions under which
the homozygous gene-deletion strain
shows significantly slower growth than
under the control condition. For the
unbinned data, the rank correlation co-
efficient is 0.19 (P, 10�6) between plei-
otropy and the number of PPIs per
gene. The numbers of genes in the five
bins are 501, 85, 61, 42, and 48, respec-
tively. Error bar shows one standard er-
ror of mean. (B) Interacting proteins
tend to share phenotypic effects. The ar-
row indicates the observed number of
interacting protein pairs for which at
least one phenotype (i.e., condition un-
der which slow growth is found) is
shared. The bars show the frequency
distribution of the number of randomly
paired proteins for which at least one
phenotype is shared. The distribution
is generated from 10,000 randomly re-
wired yeast PPI networks. (C) An exam-

ple showing the phenotypes shared between a focal gene CUP5, also known as YEL027W, and all of its PPI partners. ‘‘0,’’ no
phenotype; ‘‘1,’’ with phenotype. See Dudley et al. (2005) for the detailed information of the 21 conditions.
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inefficient to isolate gene mutants that affect only one
trait. This concern is particularly meaningful in human
genetics where isolation of symptom-specific alleles is
thought to be important for developing effective treat-
ments (Dudley et al. 2005). Our finding suggests that
developing drugs that target only one particular phe-
notypic effect of a pleiotropic gene is likely to be dif-
ficult. However, targeting a specific protein interaction
or an interacting partner of the pleiotropic gene might
be a useful strategy. Our results also show the universality
that the samemolecular function of a gene is repeatedly
used in different biological processes.

Pleiotropic genes are widely believed to be evolution-
arily conserved because they are subject to purifying
selection acting onmultiple traits and are less likely to ex-

perience beneficial mutations (Fisher 1958; Hodgkin

1998). We find that 39.56 0.8% of nonpleiotropic yeast
genes (no phenotype in any condition) have detectable
homologs in the fruit fly D. melanogaster (Figure 4A). In
comparison, 49.26 2.3% of low pleiotropic genes (with
phenotypes in one to two conditions) and 54.7 6 3.6%
of high pleiotropic genes (with phenotypes in more
than two conditions) have fruit fly homologs. Together,
pleiotropic genes are significantly more likely to be
retained in long-term evolution than nonpleiotropic
genes (x2¼ 29, P, 10�7). Similarly, 52.66 2.7% of pleio-
tropic yeast genes have detectable homologs in the
nematode C. elegans, in comparison to 38.3 6 1.1% of
nonpleiotropic genes (x2 ¼ 20, P , 10�5). When the
fungus S. pombe is compared, 71.76 3.3% of pleiotropic
yeast genes have detectable homologs, in comparison
to 58.4 6 1.3% of nonpleiotropic genes (x2 ¼ 41, P ,

10�9). We also computed the nonsynonymous nucleo-
tide distance (dN) between orthologous genes of S.
cerevisiae and S. bayanus, two closely related yeast species,
and observed a negative correlation between pleiotropy
and dN (r ¼ �0.12, P , 10�11), suggesting that pleio-
tropic genes tend to evolve more slowly at nonsynon-
ymous sites (Figure 4B), consistent with a recent study
that was based on fewer genes (Salathe et al. 2006).Our
result is robust (r ¼ �0.09, P , 10�7) even when we
control for the level of gene expression, the most im-
portant determinant of dN in yeasts (Pal et al. 2001;
Zhang and He 2005; Drummond et al. 2006). Thus,
genomewide analyses demonstrate that pleiotropy leads
to the evolutionary conservation of genes and gene
sequences.
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