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ABSTRACT
One of the key factors contributing to the success of a quantitative trait locus (QTL) mapping experiment

is the precision with which QTL positions can be estimated. We show, using simulations, that QTL mapping
precision for an experimental cross can be increased by the use of a genotypically selected sample of
individuals rather than an unselected sample of the same size. Selection is performed using a previously
described method that optimizes the complementarity of the crossover sites within the sample. Although
the increase in precision is accompanied by a decrease in QTL detection power at markers distant from
QTL, only a modest increase in marker density is needed to obtain equivalent power over the whole map.
Selected samples also show a slight reduction in the number of false-positive QTL. We find that two features
of selected samples independently contribute to these effects: an increase in the number of crossover sites
and increased evenness in crossover spacing. We provide an empirical formula for crossover enrichment
in selected samples that is useful in experimental design and data analysis. For QTL studies in which the
phenotyping is more of a limiting factor than the generation of individuals and the scoring of genotypes,
selective sampling is an attractive strategy for increasing genome-wide QTL map resolution.

THE precision with which a quantitative trait locus ers in experimental crosses (Vision et al. 2000). In the
first step, a limited number of framework markers are geno-(QTL) can be located in a genome-wide survey can
typed in a large base population . From the resultant geno-be critical to the time, expense, and probability of suc-
type matrix, individuals are selected that collectively pro-cess of subsequent positional cloning (Remington et al.
vide good coverage (as defined below) of the crossover2001). The precision of QTL position estimates, some-
sites in the larger population. Large numbers of second-times referred to as map resolution , can be frustratingly
ary markers can then be genotyped on the selected samplelow in experimental crosses (Nadeau and Frankel 2000).
and their positions inferred relative to the previouslyMap resolution can be affected by the method used for
mapped framework markers. The resolution obtainedstatistical analysis (e.g., Zeng 1994), but there is a limit
with selective mapping for a given investment of genotyp-to the extent to which analysis can compensate for poor
ing effort can considerably exceed that obtained usingexperimental design. Factors affecting map resolution
an equivalently sized random sample of individuals. Thethat can be controlled during experimental design in-
gain is most dramatic for small genomes (�1000 cM).clude the number of individuals in the sample and the

In principle, a similar strategy could also be appliednature of the genetic cross (Mackay 2001). These two
to QTL mapping with the aim of maximizing the resolu-factors affect resolution, at least in part, by governing
tion obtained when only a limited number of permanentthe sample of meoitic crossover sites occurring between
genotypes can be propagated or phenotyped. Althoughmarkers and QTL. This suggests that it might be possible
it is generally undesirable to use a small sample forto increase map resolution by directly selecting those
QTL mapping when a larger one is available due to theindividuals to phenotype on the basis of observable
limited QTL detection power and inaccurate estimatescrossover events (see also Ronin et al. 2003).
of genetic effect sizes obtained with small samplesA method for choosing mapping samples on the basis
(Beavis 1998), practical constraints on sample size areof observable crossovers has previously been proposed,
commonplace. For instance, the same genotypes mayalthough not in the context of QTL mapping. Selective
need to be phenotyped at multiple sites in multiplemapping is an experimental design strategy for genome-
years, and financial constraints may set an upper limitwide, high-density linkage mapping of molecular mark-
to the number of genotypes that can be used (see also
Jin et al. 2004).

We refer to the choice of individuals for phenotyping
1Corresponding author: Department of Biology, Campus Box 3280,

on the basis of their genotypes, namely the inferredUniversity of North Carolina, Chapel Hill, NC 27599.
E-mail: tjv@bio.unc.edu positions of crossover sites, as selective sampling. Here
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402 Z. Xu, F. Zou and T. J. Vision

we study the statistical consequences of using such a termed the sample fraction, symbolized by f . Selective sam-
selected sample. In particular, we use simulations to pling was performed using the MapPop software package
quantify the effects of selective sampling on QTL detec- (http:/www.bio.unc.edu/faculty/vision/lab/mappop/).
tion power, sensitivity, and specificity and on the preci- Crossover enrichment: Use of the SSBL objective func-
sion of estimated QTL positions. tion is expected to lead to an enrichment of crossovers

in a selected sample. The total number of crossovers in
the selected sample relative to that expected in a ran-

METHODS
dom sample of the same size is referred to as the crossover

Crossover distribution: Simulation of genotypes: Since enrichment (CE). CE was measured for selected samples
the principal difference between a selected and a ran- drawn from simulated base populations in which the
dom sample is in the frequency and spatial arrangement sample fraction, marker density, and map length were
of crossover sites, we studied the effect of selective sam- varied.
pling on these features of the sample. It is important Pseudointerference : In addition to crossover enrich-
to note, however, that there may be other differences ment, use of the SSBL objective function is expected to
between selected and random samples that are not ex- produce bin lengths that are less variable than those in
amined here. For instance, we have observed that selec- a random sample. This phenomenon, which we call
tive sampling generally reduces the variance in geno- pseudointerference , differs from standard crossover inter-
typic proportions at each locus (Doganlar et al. 2002; ference in that it arises from selection of crossovers
T. J. Vision and D. G. Brown, unpublished results). present in different individuals rather than from biologi-

For most experiments, we used a base population cal interference among crossovers during meiosis.
of diploid recombinant inbred lines (RILs), each line We use the Karlin map function (Karlin 1984) to
derived by recurrent selfing of a unique member of quantify the magnitude of pseudointerference. A map
an F2 population. Backcross recombinant inbred line function models the relationship between m, the genetic
(BRIL) and doubled haploid (DH) base populations distance in morgans, and r, the recombination rate. In
were also studied where indicated. Each individual was random samples, the positions of crossover sites should
assumed to have a single linkage group of length L cM, be well fit by the Haldane map function, which assumes
where L varied according to the experiment. At a given sites are spaced uniformly at random. When there is
marker density, marker positions were assigned with positive or negative interference among crossovers, a
even spacing or uniformly at random. The expected different map function is needed.
number of crossovers in each individual was calculated For our purposes, the key property of the Karlin map
as z r � 2 � (1/100)L , since the cumulative number of function,
crossovers is approximately twofold higher in a late-

m � 0.5N �1 � (1 � 2r)1/N� , (1)generation selfed F2 RIL than in an F2 individual. (Hal-
dane and Waddington 1931). The realized number z i

is that it allows for variable interference by adjustmentof crossovers in individual i was simulated as a Poisson
of the N parameter. When N is large (�5), interferencerandom variable with expectation z r . The locations of
is negligible and the Karlin and Haldane map functionsthe crossovers were drawn from a uniform distribution
converge. Thus, the value of N allows us to evaluate theon (0, L) conditional on z i .
consequences of different sampling strategies on the levelSampling from a base population: From a base popula-
of pseudointerference and to study the consequences oftion, n individuals were selected either at random or
differing levels of pseudointerference on QTL estimation.using selective sampling with the sum of squares of bin

In addition, when QTL analysis is done using intervallengths (SSBL) objective function (Vision et al. 2000).
mapping (Lander and Botstein 1989), it is necessaryThe objective function can be understood as follows. A
to specify the map function to accurately estimate thebin is defined on a sample of individuals as an interval
position of a QTL relative to its flanking markers. An-along the linkage group within which there are no cross-
other motivation for this aspect of the study is thus toovers in any sampled individual and bounded on either
provide some guidance as to what map function wouldside either by a crossover in at least one individual or
be appropriate to use for interval mapping on selectedby the end of a linkage group (Vision et al. 2000). By
samples.minimizing the sum of the squares of the bin lengths,

We fit the Karlin map function to recombination datawe obtain a sample of individuals in which crossovers
from selected samples and estimated the magnitude ofare more frequent, and the distance between them less
N. Map positions were first rescaled by CE. Let the num-variable, than in a random sample. Previous work has
ber of crossovers in the interval from 0 to i cM in individ-shown that SSBL behaves well even when framework
ual j be denoted x i j . For an interval to be consideredmarkers are widely spaced and the genotyping error
recombinant, we required that mod(x i j , 2) � 1 (i.e.,rate is high (Vision et al 2000).
there must be an odd number of crossovers in the inter-The proportion of individuals from the base population

present in either the random or the selected sample is val). The recombination rate for the i th interval was
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403QTL Map Resolution

calculated as �jmod(x i j , 2)/S , where S is the number To estimate the effect of selective sampling on detec-
tion power, QTL analysis was performed on samplesof individuals in the sample. Equation 1 was then fit by

nonlinear regression using SAS (Cary, NC) to data that differing only in crossover enrichment (with uniformly
random crossover sites) or on selected vs. CE-adjustedincluded all intervals of integral length starting at 0.

While the intervals were not strictly independent, ob- random samples. These two comparisons allow us to
separate the effects of crossover enrichment and pseu-taining independent intervals with selective mapping

would have been computationally prohibitive, and the dointerference on the power to detect a QTL and on
the precision with which it is located. The detection powerlarge sample size (10,000 individuals) ensured that esti-

mates of N were stable. was defined to be the probability that the maximum LR
at any marker or position exceeded the significanceCE-adjusted random samples: Differences in QTL es-

timates obtained with a selected sample vs. a random threshold for a type I error of � � 0.05.
To calculate sensitivity and specificity of QTL detec-sample of the same size may be due to CE and/or pseu-

dointerference. To separately investigate these two fac- tion, we adopted the following conventions. A peak was
defined as a point where the LR value exceeded bothtors, we employed CE-adjusted random samples in which

the expected number of crossovers was equal to z s � z r � the significance threshold and the LR values of adjacent
points (or point, if at the end of a linkage group). TheCE. The realized number z i of crossovers in individual i

was simulated as a Poisson random variable with expec- range of the peak was taken to be the interval on either
side of the peak bounded by the end of the linkagetation z s and the locations of the crossovers were drawn

from a uniform distribution on (0, L) conditional on group or by that point closest to the peak with an LR
value below the threshold, whichever came first. Thez i . Thus, CE-adjusted samples are free of pseudo-inter-

ference. By comparison of CE-adjusted random samples position of the highest LR peak within the range was
taken to be the QTL position. If the range bracketed awith varying levels of CE, the effects of CE alone can

be isolated. Alternatively, by comparison of a selected true QTL position, then the peak was counted as a true
positive (TP); if not, it was counted as a false positivesample with a CE-adjusted random sample of equivalent

CE, the effects of pseudointerference alone can be iso- (FP). If a true QTL position was not bracketed by the
range of any peak, then it was counted as a false negativelated.

QTL experiments: Simulation of QTL: To study the (FN). Sensitivity (Sn) and specificity (Sp) were then
calculated as follows:effects of selected sampling on QTL analysis, loci affect-

ing a quantitative trait were added to the base popula-
Sn � TP/(TP � FN)tions simulated above. The additive effect was parameter-

ized as �a and a for QTL genotypes qq and QQ , Sp � TP/(TP � FP).
respectively. Environmental deviations were drawn from

For comparison of estimated and true genetic effects,a standard normal distribution. To calculate the herita-
we took the estimate of a at the peak to be the estimatebility h2, we used the fact that the additive genetic vari-
of the genetic effect; when no QTL was detected, thatance contributed by a QTL is Vg � a 2 in an F2 RIL
replicate was discarded.population. For simulations where additive effects were

QTL mapping resolution was measured using two differ-considered to be random variables, they were sampled
ent methods. The first was to take the difference be-from a gamma (1, 2) distribution (Zeng 1992). In simu-
tween the 2.5 and 97.5% quantiles of the estimated QTLlations involving multiple QTL, the loci were con-
position among a set of independent QTL populationsstrained to be spaced at least 100 cM apart.
sharing a fixed QTL position and effect size (DarvasiQTL analysis: QTL analysis was performed via single-
and Soller 1997). To approximate an infinite numbermarker analysis as implemented in QTL Cartographer v.
of markers, we used an even density of 10 markers per1.16 (Basten et al. 2002). At each marker, the following
centimorgan for QTL analysis and took the marker withmodel was fit: y i � b 0 � b 1x i � e (i � 1, 2, . . . , total
the highest LR in each replicate to be the estimatednumber of individuals), where y i is the phenotype of
QTL position. The second method was to calculate thethe i th individual, x i is the indicator variable for the
1-LOD drop support interval, defined as the distance be-marker genotype, and the error e is assumed to be nor-
tween the two points on either side of the peak wheremally distributed with mean 0 and variance e 2 (Basten
the base-10 logarithm of the LR [the log of odds (LOD)et al. 2002). A likelihood-ratio (LR) test statistic was
score] declined by 1 unit. In the multiple-QTL simula-computed to test the null hypothesis H0: b 1 � 0 vs.
tions, only TP peak ranges were used for this calculation.the alternative hypothesis H1: b 1 ⇁ 0. To estimate the

genome-wide significance threshold for the LR, data
were simulated under the null hypothesis that no QTL

RESULTS AND DISCUSSION
was present. The (1 � �)100th percentile of the maxi-
mum LR was used as the threshold to control the ge- Crossover enrichment: We first investigated the nature

of CE in selected samples. We found CE to be inverselynome-wide type I error at � (after Dupuis and Sieg-
mund 1999). related to the sample fraction, marker spacing, and map
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404 Z. Xu, F. Zou and T. J. Vision

Figure 1.—Crossover enrich-
ment after selection of RILs with
varied framework marker inter-
vals (A) and chromosome
lengths (B). Base population size
is 500; L � 1000 cM in A. Marker
interval is 10 cM in B. Each point
is the average of 10,000 individ-
uals.

length (Figure 1). These results make intuitive sense. CE � 1 � 0.5(1 � f )√A/L , (2)
Since the sample fraction is itself an inverse measure

where A is a constant that is determined by the type ofof the strength of selective sampling, a small sample
base population. For an F2 RIL population, A � 500.fraction is expected to result in more extreme CE than
For BRIL and DH populations, A � 750 and 1200, re-a larger (and more nearly random) one. Marker spacing
spectively. Within the particular parameter range thataffects the precision with which crossovers are detected
we explored (L � [100, 2500], f � [0.1, 0.9], and markerin the base population as well as the number of frame-
spacing from 1 to 10 cM), nonlinear regression usingwork marker intervals that contain double crossovers.
Equation 2 yielded R 2 values of 0.96, 0.98, and 0.98 forSince double crossovers between adjacent markers are
F2 RIL, BRIL, and DH, respectively. Note that simula-invisible to the selection algorithm, one expects a de-
tions were excluded when the map length was shortcline in CE as the framework marker spacing increases.
(100 cM) and the sample fraction was small (0.1), asWe found that when the marker spacing was already
these gave unusually large deviations. Also, Equation 2

� �10 cM, CE was fairly insensitive to variability in
was derived using simulated data in which markers weremarker spacing, reflecting the rarity of double-recombi-
evenly spaced; CE was found to be smaller when markersnant intervals in such maps. The inverse relationship
were distributed uniformly at random but the differenceof CE to map length agrees with previous studies show-
was slight (�0.1).ing that the effectiveness of selective sampling declines

Pseudointerference: We measured the magnitude ofwith map length (Vision et al. 2000; Brown 2001).
pseudointerference in selected samples by fitting theWe noted that when the marker spacing was � �10
Karlin map function to simulated recombination data.cM, CE was nearly inversely proportional to the square
A large value of N (�5) indicates that pseudointerfer-root of the map length, L, and the sample fraction, f.
ence is negligible. We examined base populations ofRemarkably, CE could be very closely predicted by the
500 individuals with L � [100, 5000], f � [0.1, 0.9], andempirical formula
marker spacings of 5–20 cM. The best-fit parameter of
N was found to be sensitive to all three factors: map
length, sample fraction, and marker spacing (Figure 2).
The map function in Equation 1 was fit to recombina-
tion data from 10,000 individuals for each parameter
combination (where the individuals came from multiple
selected samples). In all cases, the R 2 goodness-of-fit
value was �0.94; for most parameter combinations, it
was �0.97. Pseudointerference was greater when the
sample fraction was small and the map length was short,
consistent with the behavior of CE described above. A
more surprising result was that pseudointerference was
more pronounced when markers were more distantly
spaced.

Further analysis offered a potential explanation for
the relationship between marker spacing and pseudoin-

Figure 2.—Best-fit Karlin map function parameter N as a
terference. We hypothesized that since marker intervalsfunction of sample fraction. L � 100 cM (solid line) or 500
bearing double crossovers are not distinguishable fromcM (dashed line). Marker spacing was 5 (�) or 20 cM (�).

Each point is obtained from 10,000 individuals. those bearing no crossovers at all during the selection
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405QTL Map Resolution

Figure 4.—The length distribution of intercrossover inter-Figure 3.—Number of recombinations per individual in
vals. Selective sampling was done using marker spacings of 5selected (dashed lines) and CE-adjusted random (solid lines)
(�), 10 (�), or 20 cM (�); random samples are shown bysamples; L � 100 cM; marker spacing was 5 (�), 10 (�), or
diamonds (�); L � 100 cM; base population was 500 individu-20 cM (�). Each value is the average of 10,000 individuals.
als; f � 0.1. Numbers were calculated out of the total number
of intercrossover intervals present in 10,000 individuals. The
bin shown at length x represents the interval (x � 4, x]. The

phase, there would be a bias to select individuals that have spike in the rightmost bin of the series is due to the occurrence
of an appreciable number of chromosomes without crossoversonly one crossover within each marker interval. This
at that marker spacing.would, in turn, lead to crossovers that are spaced rela-

tively evenly. The effect would be most pronounced when
markers are sparse because closely spaced crossover sites

cally, as described in methods. We conducted two ex-in the base population would be less likely to result in
periments to quantify the effects of CE and pseudointer-an observable recombination and thus would be under-
ference separately from one another.represented in the selected sample.

In the first experiment, we compared CE-adjustedIn support of this hypothesis, we found that there were
random samples with varying levels of CE under differ-more observed recombinations in selected samples than
ent marker spacings. This comparison allows us to evalu-in random samples even when random samples were ad-
ate the effect of CE alone since these samples are free ofjusted to have the same expected number of crossovers
pseudointerference. We found that power was inversely(Figure 3). Another way to understand the underlying
related to CE but that the relationship was nearly flateffect of selection on crossovers and recombinations is
when the marker spacing was �5 cM, corresponding toto note the change in the distribution of intercrossover
a marker-QTL distance of �2.5 cM (Figure 5A). Evenintervals within an individual in a selected sample. Re-
for CE � 1, the detection power was inversely relatedmarkably, the mode in the intercrossover interval length
to the marker spacing. This indicates that the increasingoccurs at the same centimorgan distance as the marker
distance between the flanking markers and the QTL wasspacing used for selective sampling (Figure 4).
more important to detection power than the variation inThe distribution of crossover sites in our simulated
the significance threshold, which was lower for the morebase populations differs from that in a true RIL popula-
widely spaced markers.tion in one important respect. In a true RIL population,

In the second experiment, we compared the powercrossovers accumulate over multiple generations as each
between selected samples and CE-adjusted random sam-recombinant inbred line approaches homozygosity. Only
ples, where the CE did not differ between the two typescrossovers in heterozygous segments lead to recombina-
of samples. This was done to measure the effect of pseu-tions. This process leads to negative interference: double
dointerference alone. Here, we also found that the QTL-recombinations will occur within short intervals more of-
detection power in the selected samples was less thanten than under our assumption of uniformly distributed
that in CE-adjusted random samples (Figure 5B). Thus,crossovers. Nonetheless, we have found that explicitly
QTL detection power is affected by both CE and pseudo-simulating the process of selfing over multiple genera-
interference.tions to produce more realistic RIL genotypes does not

For experimental design purposes, an investigatorhave an appreciable affect on the comparison between
would like to know how dense markers need to be, whenrandom and selected samples (results not shown).
selecting a predetermined fraction f , to obtain the sameQTL analysis: We examined the effect of selective sam-
QTL detection power as that of an equivalently sizedpling on QTL detection power for simulated base popula-
random sample. To study this, we simulated populationstions in which one QTL was segregating at an equal
in which QTL position was random with respect to thedistance from two flanking markers. The threshold and

power for a given experiment were determined empiri- markers and compared random samples to selected
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Figure 5.—(A) Detection
power in samples differing
only in crossover enrichment.
Lines correspond to marker
spacings of 1 (�), 5 (�), 10
(�), and 20 cM (�). L � 1000
cM. (B) Detection power in
selected (dotted lines) and
CE-adjusted random (solid
lines) samples is shown. Lines
correspond to marker spac-
ings of 5 (�), 10 (�), and 20
cM (�). L � 100 cM. In both
A and B, a single QTL (with
additive effect of a � 0.5 and
heritability of h 2 � 0.2) was
located equidistant from the
two centermost markers. Sam-
ple size was 100. Each point
obtained was from 5000 repli-
cates.

samples differing in both CE and pseudointerference son for increased specificity of selected samples is not
(Figure 6). In the case of a 1000-cM map, 51 markers clear. One thing we can conclude is that it is not due
in a random sample had equivalent power to an f � 0.5 to CE, because CE-adjusted samples do not differ from
selected sample with 59 markers or an f � 0.1 selected random samples in their specificity (results not shown).
sample with 72 markers. Thus, a modest increase in However, this does not necessarily implicate pseudoin-
marker density can counteract the effects of increased terference as the cause of the increased specificity.
CE and pseudointerference even under extreme selec- Estimates of QTL additive-effect size are known to be
tion. upwardly biased due to the so-called Beavis effect (Beavis

We then measured the effect of selective sampling 1998). The lower the QTL detection power, the greater
on the sensitivity and specificity of QTL detection. Both the bias. Since QTL detection power is reduced by selec-
single-QTL and multiple-QTL simulations show that tive sampling, we would expect the effect size estimates
sensitivity is slightly reduced and specificity is slightly to be inflated over that obtained for random samples.
increased in selected samples when markers were widely We did, in fact, observe this trend, but the added effect
spaced, but that the differences were relatively small of selection was relatively small except in a few cases
when markers were dense (Figure 7). While the reduced where selection was unrealistically intense (results not
sensitivity of selected samples is not surprising in light shown).
of the detection power results discussed above, the rea- QTL mapping resolution: Since QTL detection power

is reduced considerably for distant markers, but less so
for nearby ones, we hypothesized that the confidence
or support intervals to which QTL are located in selected
samples might be smaller than those in random ones. To
test this hypothesis, we examined the effect of selective
sampling on two different measures of QTL mapping
resolution: the distribution of QTL peak positions
among independent simulations (Darvasi and Soller
1997) and the 1-LOD drop support interval. For both
measures, QTL were located with substantially greater
precision in selected samples. The 1-LOD drop support
interval results are shown in Figure 8A for simulated
populations in which one QTL was segregating. The
increase in QTL mapping resolution was similar across a
range of additive-effect sizes. Precision was substantiallyFigure 6.—Detection power in random and selected sam-

ples for a trait underlain by a single QTL with random position better when selection was done with a shorter map.
and effect size; L � 1000 cM; h 2 � 0.2; markers are distributed Precision was also improved, but not as dramatically, by
uniformly at random; f � 0.2 (�) or 0.5 (�), corresponding selection using densely spaced markers.to base population sizes of 500 and 200, respectively. Random

Selective sampling also increased map resolution forsamples (of size 100) are denoted by �. Each point was ob-
tained from 5000 replicates. simulations in which five QTL were segregating (Figure
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Figure 7.—Sensitivity (�)
and specificity (�) in random
(solid lines) and selected
(dashed lines) samples. (A)
One QTL with h 2 � 0.2. (B)
Five QTL with random effect
sizes having an overall h 2 �
0.5. For both A and B, L �
1000 cM, base population was
500 individuals; f � 0.2. QTL
positions were random al-
though constrained to be �100
cM apart from each other in
the five QTL simulations.
Each point was obtained from
5000 replicates.

8B). For these simulations, the same markers were used One reason for the difference between selected and
random samples is the increased number of crossoverfor selective sampling and QTL analysis to increase the

realism of the experiment. The absolute difference in sites or CE. We found that a simple formula can be used
to predict CE in a selected sample when the markerthe size of the support interval is considerably greater

when the markers are sparse, although the proportional spacing is dense (�10 cM). The value of CE thus ob-
tained can be used to adjust the genetic map prior todifference in the size of the support interval is relatively

insensitive to marker spacing. In sum, selective mapping statistical analysis of QTL.
A second factor affecting QTL detection power andappears to effectively increase map resolution even for a

complex trait and even when markers are widely spaced. resolution is the reduced variability in intercrossover
interval length within each individual, or what we haveFurthermore, this conclusion is robust to moderate epis-

tasis (results not shown). termed pseudointerference.
QTL mapping is widely used a first step in the determi-Conclusions: In summary, we have found that the

probability of detecting a QTL is somewhat diminished nation of the molecular basis of phenotypic variation
relevant to agriculture, medicine, ecology, and evolu-in a selected sample relative to a random one when the

QTL is far from a marker. But since this reduction in tionary biology (Mackay 2001). Since, for most organ-
isms, QTL intervals can encompass tens to hundreds,power disappears when the distance between the marker

and the QTL approaches zero, the width of the confi- even thousands, of genes, the major effort in cloning a
QTL is the work required to refine the estimated posi-dence interval surrounding the QTL is narrowed, re-

sulting in a more precise estimate of QTL location. The tion once a genome-wide survey has been completed
(Remington et al. 2001). Thus the feasibility of QTLincreased marker density needed to take advantage of

this increased resolution is fairly modest. Additionally, mapping hinges, in part, on the precision with which
QTL can be located during this initial scan. A numberspecificity in QTL detection is slightly higher in selected

samples. of strategies are available for increasing QTL map reso-

Figure 8.—Confidence in-
tervals obtained using the
1-LOD drop method for QTL
in random (solid lines) and se-
lected samples (f � 0.1, dashed
or dotted lines). (A) Samples
segregating for one QTL at a
fixed position (50 cM from the
beginning of the map) with a
fixed environmental variance
of 1; L � 100 (dotted lines)
or L � 1000 cM (dashed line);
marker spacing during selec-
tion was 1 (�) or 10 cM (�);
QTL analysis was performed
only on the first 100 cM of the
map. (B) Five QTL with ran-

dom positions, but constrained to be 	100 cM from each other; total heritability of h 2 � 0.5; L � 1000 cM; base population of
100, random sample (solid line) and selected sample ( f � 0.2, dashed line). Shown are means and standard errors of 5000
replicates.
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ping quantitative trait loci in inbred backcross lines of Lycopersiconlution, among them the use of large populations and
pimpinellifolium (LA1589). Genomics 45: 1189–1202.

multiple generations of intercrossing. We have shown Dupuis, J., and D. Siegmund, 1999 Statistical methods for mapping
quantitative trait loci from a dense set of markers. Genetics 151:here that selective sampling is an additional strategy
373–386.that can be used to increase QTL map resolution over

Haldane, J. B. S., and C. H. Waddington, 1931 Inbreeding and
a random sample of the same size. Selective sampling linkage. Genetics 16: 357–374.
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