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ABSTRACT
A quantitative genetic model relates the genotypic value of an individual to the alleles at the loci that

contribute to the variation in a population in terms of additive, dominance, and epistatic effects. This
partition of genetic effects is related to the partition of genetic variance. A number of models have been
proposed to describe this relationship: some are based on the orthogonal partition of genetic variance
in an equilibrium population. We compare a few representative models and discuss their utility and
potential problems for analyzing quantitative trait loci (QTL) in a segregating population. An orthogonal
model implies that estimates of the genetic effects are consistent in a full or reduced model in an
equilibrium population and are directly related to the partition of the genetic variance in the population.
Linkage disequilibrium does not affect the estimation of genetic effects in a full model, but would in a
reduced model. Certainly linkage disequilibrium would complicate the detection of QTL and epistasis.
Using different models does not influence the detection of QTL and epistasis. However, it does influence
the estimation and interpretation of genetic effects.

MANY quantitative genetics publications (e.g., Fal- which is a direct extension of the above model to two
coner and Mackay 1996) use the following loci. On the other hand, we have the model proposed

model to interpret genetic effects between genotypes by Cockerham (1954) following Fisher (1918) and a
AA, Aa, and aa in one locus: specific simplified model for an F2 population proposed

by Anderson and Kempthorne (1954). The model pro-G2 � � � a, G1 � � � d, G0 � � � a.
posed by Cheverud and Routman (1995) is, however,

In this model, a is the additive effect defined as half of somewhat different.
the difference between the two homozygote genotypic We seek to compare these models on the meaning
values, d is the dominance effect defined as the differ- and interpretation of genetic effects, including epistatic
ence between the heterozygote genotypic value and the effects, particularly in reference to QTL mapping analy-
mean homozygote genotypic value, and � is a constant. sis. Previously, Van Der Veen (1959) gave a comparison
In this way, the genetic effects are defined only as a of the model by Hayman and Mather (1955), called
function of genotypic values. This is in contrast to a by Van Der Veen (1959) as the F∞-metric model; the
Fisherian model, where the genetic effects are defined model by Anderson and Kempthorne (1954), called
specifically in reference to a population, usually an equi- the F2-metric model; and another model, called the
librium population with specified allelic frequencies. mixed-metric model. However, the comparison by Van
The allelic substitution effect in a Fisherian model is Der Veen (1959) was restricted to the transformation
traditionally called the average effect. As explained by of parameter values from one model to another.
Falconer and Mackay (1996, p. 112), “average effects The issue is actually more than whether a model is
depend on the genotypic values, a and d as previously defined on the basis of genotypic values only or also on
defined, and also on the gene frequencies. Average ef- the basis of allelic frequencies. Even if model parameters
fects are therefore properties of populations as well as are defined only on the basis of genotypic values, there
of the genes concerned.” are many ways to define a QTL model, thus additive,

A similar argument has been made for epistasis (Chev- dominance, and epistatic effects. The models compared
erud and Routman 1995). On the one hand, we have by Van Der Veen (1959) are all based on genotypic
the model proposed by Hayman and Mather (1955) values only, so to speak.
and discussed in length in Mather and Jinks (1982), The purpose of modeling QTL, of course, is to pro-

vide a way to summarize and interpret the differences
between the genotypic values and also the genetic varia-

1Corresponding author: Bioinformatics Research Center, Department tion observed in a study population. This can be facili-of Statistics, North Carolina State University, Raleigh, NC 27695-7566.
E-mail: zeng@stat.ncsu.edu tated if a model is consistent in the definition of the
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genetic effects in a full or reduced model with multiple
loci under certain conditions. EF∞·A � S�1

F∞·AGA �

⎡
⎢
⎢
⎣

1⁄2 0 1⁄2
1⁄2 0 �1⁄2

�1⁄2 1 �1⁄2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

G 2

G 1

G 0

⎤
⎥
⎥
⎦
.

Here we provide a framework to compare these mod-
els. All of these models are regression based and models

(4)

Here the departure point (�) is defined as the meandiffer by different specifications of the regressors re-
lated to additive and, particularly, dominance effects of two homozygote genotypic values. This corresponds
and thus to epistatic effects as well. In this way, the to the mean in an F∞ population, a population continu-
similarities and differences between the models become ously selfed for many generations starting from an F1.apparent. We discuss and compare the meaning of ge- For this reason, Van Der Veen (1959) called it the F∞-
netic effects defined in different models in different metric model. We shorten it to the F∞ model.
situations with respect to one, two, or multiple loci. We Recall that the additive effect a is defined as half of
also discuss potential problems in using some models the difference between the homozygote genotypic val-
in a segregating population for QTL analysis. Last, we ues (G 2 and G 0) and that the dominance effect d is
discuss how to estimate and interpret estimates of ge- defined as the difference between the heterozygote ge-
netic effects in a population with loci in linkage disequi- notypic value (G 1) and the mean of the homozygote
librium. genotypic values.

If the allelic frequency for allele A is 0.5, the expected
value of w is zero. However, the expected value of v is

MODELS not zero for any allelic frequency. This has implications
for the definition and interpretation of additive andF∞ model—traditional model: The regression
dominance effects with epistasis on two or more loci.equation for this model is

An extension of (1) to two loci with epistasis yields

G � � � aw � dv (1) G � � � a 1w 1 � d 1v 1 � a 2w 2 � d 2v 2 � (aa)12(w 1w 2)

with � (ad)12(w 1v 2) � (da)12(v 1w 2) � (dd)12(v 1v 2) (5)

with w 1, v 1, w 2, and v 2 defined by (2) for loci 1 and 2,
correspondingly. Excluding the additive and domi-w �

⎧
⎪
⎨
⎪
⎩

1 for AA

0 for Aa

�1 for aa

and v �

⎧
⎪
⎨
⎪
⎩

0 for AA

1 for Aa

0 for aa , nance effects for both loci, there are four epistatic (in-
teraction) effects: the additive � additive effect (aa)12

(2)

is associated with the product of additive-effect designwhere a and d are additive and dominance effects of
variables w 1 and w 2, while the additive � dominanceQTL and w and v are the corresponding genetic-effect
effect (ad)12 is associated with the product of additive-design variables. With three genotypic values and three
and dominance-effect design variables w 1 and v 2 , andparameters, there is a unique solution for the parameter
so on.values. We use matrix notation to give this solution for

Expressed in matrix notation, the F∞ model takes thereasons that will later become apparent.
formLet us define

GA �

⎡
⎢
⎢
⎣

G 2

G 1

G 0

⎤
⎥
⎥
⎦
, E F∞·A �

⎡
⎢
⎢
⎣

�

a

d

⎤
⎥
⎥
⎦
, S F∞·A �

⎡
⎢
⎢
⎣

1 1 0

1 0 1

1 �1 0

⎤
⎥
⎥
⎦
.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G 22

G 21

G 20

G 12

G 11

G 10

G 02

G 01

G 00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0

1 1 0 �1 0 �1 0 0 0

1 0 1 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1

1 0 1 �1 0 0 0 �1 0

1 �1 0 1 0 �1 0 0 0

1 �1 0 0 1 0 �1 0 0

1 �1 0 �1 0 1 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�

a1

d 1

a 2

d 2

aa

ad

da

dd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then

GA � S F∞·AE F∞·A

represents
(6)

(Hayman and Mather 1955; Mather and Jinks 1982),
⎡
⎢
⎢
⎣

G 2

G 1

G 0

⎤
⎥
⎥
⎦

�

⎡
⎢
⎢
⎣

1 1 0

1 0 1

1 �1 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

�

a

d

⎤
⎥
⎥
⎦
.

or
(3)

Multiplying on both sides by the inverse of the genetic-
GAB � SF∞·ABE F∞·AB .

The unique solution for E F∞·AB iseffect design matrix, S�1
F∞·A, leads to
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interaction effect even for loci in equilibrium. So evenEF∞·AB � S �1
F∞·ABGAB

when v 1 and v 2 are independent, which means E(v 1v 2) �
E(v 1)E(v 2), however, Cov(v 1, v 1v 2) � E(v 2

1v 2) � E(v 1)
E(v 1v 2) � E(v 2

1)E(v 2) � E(v 1)2E(v 2) � Var(v 1)E(v 2) �
0 if E(v2) � 0.

Note that the genetic-effect design matrix for two
loci, S F∞·AB, is a direct product (Kronecker product) of

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1⁄4 0 1⁄4 0 0 0 1⁄4 0 1⁄4
1⁄4 0 �1⁄4 0 0 0 1⁄4 0 �1⁄4

�1⁄4 0 �1⁄4 1⁄2 0 1⁄2 �1⁄4 0 �1⁄4
1⁄4 0 1⁄4 0 0 0 �1⁄4 0 �1⁄4

�1⁄4 1⁄2 �1⁄4 0 0 0 �1⁄4 1⁄2 �1⁄4
1⁄4 0 �1⁄4 0 0 0 �1⁄4 0 1⁄4

�1⁄4 1⁄2 �1⁄4 0 0 0 1⁄4 �1⁄2 1⁄4

�1⁄4 0 1⁄4 1⁄2 0 �1⁄2 �1⁄4 0 1⁄4
1⁄4 �1⁄2 1⁄4 �1⁄2 1 �1⁄2 1⁄4 �1⁄2 1⁄4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G 22

G 21

G 20

G 12

G 11

G 10

G 02

G 01

G 00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. two one-locus design matrices S F∞·A and S F∞·B with some
columns rearranged to conform to the usual parameter
order in E F∞·AB . An important property for the direct
product of matrices is that the inverse of the direct
product of two square and nonsingular matrices is the

(7) direct product of the inverses of matrices.
Define this column-rearranged direct product byThe departure point (�) again is the unweighted (or

S F∞·AB � S F∞·A � S F∞·B . It can be shown that �S�1
F∞·AB�� �equally weighted) mean of the homozygote genotypic

�S�1
F∞·A�� � �S�1

F∞·B��, where � denotes transposition. In othervalues, still corresponding to the mean in an F∞ popula-
words, S�1

F∞·AB is a direct product of S�1
F∞·A and S�1

F∞·B withtion.
However, the additive and dominance effects for each some rows rearranged correspondingly.

locus in (7) are now defined with respect to the homozy- This operation is particularly useful for three or more
gote genotypes at the other locus. This is actually differ- loci. It applies to other models presented below as well.
ent from the definition at one locus in (4). When we In all cases the inverse of the design matrix can be
use Equation 4 to define and estimate the additive and readily obtained.
dominance effects for locus A, for example, the geno- F2 model—orthogonal model for p � 1⁄2 in an equilib-
types at locus B and other loci are not defined. Thus, rium population: The F2 model is another popular
both theoretically and practically, it means that the ef- model used in quantitative genetics analysis. This model
fects at locus A are defined with reference to genotypes is directly related to the least-squares model based on
at locus B and any other loci weighted by the genotypic the orthogonal partition of genetic variance in an equi-
frequencies in the application population. librium population (Cockerham 1954). When the num-

For example, for only two loci A and B in linkage ber of alleles at a locus is restricted to two and allelic
equilibrium in an F2 population, the implied definition frequency is set to one-half, the least-squares model is
of a1 and b1 by (4) is reduced to the F2 model. For one locus, the model can

also be specified as a regression model (1) by using the
a1 � �G 22

8
�

G 21

4
�

G 20

8 � � �G 02

8
�

G 01

4
�

G 00

8 � genetic-effect design variables

d1 � �G 12

4
�

G 11

2
�

G 10

4 � � �G 22

8
�

G 21

4
�

G 20

8
�

G 02

8
�

G 01

4
�

G 00

8 � ,

w �

⎧
⎪
⎨
⎪
⎩

1 for AA

0 for Aa

�1 for aa

and v �

⎧
⎪
⎨
⎪
⎩

�1⁄2 for AA
1⁄2 for Aa

�1⁄2 for aa ,
which is different from that in (7).

This is also the definition of the additive and domi-
nance effects for two loci in linkage equilibrium without

(8)

which result infitting epistatic effects,

G � � � a 1w 1 � d 1v 1 � a 2w 2 � d 2v 2 .

So for the F∞ model the additive and dominance effects GA � S F2·AE F2·A �

⎡
⎢
⎢
⎣

1 1 �1⁄2
1 0 1⁄2
1 �1 �1⁄2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

�

a

d

⎤
⎥
⎥
⎦

are defined differently, depending on whether the epi-
static effects are fitted in the model. This is because the

(9)

and
F∞ model is not an orthogonal model; i.e., the effects
are not defined to be independent for loci even in a
population with Hardy-Weinberg and linkage equilib-
rium. So even though the additive and dominance ef-

E F2·A � S�1
F2·AGA �

⎡
⎢
⎢
⎣

1⁄4 1⁄2 1⁄4
1⁄2 0 �1⁄2

�1⁄2 1 �1⁄2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

G 2

G 1

G 0

⎤
⎥
⎥
⎦
.fects a and d for the F∞ model are independent if there

is Hardy-Weinberg equilibrium, the dominance effects

(10)

The difference between the F2 and F∞ models is that
and the dominance � dominance effect are not. This
is because the mean of the dominance effect design

variable d in (8) is scaled to zero for allelic frequencyvariable in the F∞ model, E(v 1) or E(v 2), is not scaled
one-half. The starting point (�) is the mean genotypicto zero and, as a result, there is a covariance between the

dominance effects and the dominance � dominance value for an F2 population. Thus the model is known
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as the F2 model. This change in d does not alter the Note that the epistatic effects are defined in the same
definition of additive and dominance effects in a one- way for both the F2 and F∞ models. This is because the
locus model as a and d in (4) and (10) are the same. additive and dominance effects in S�1

F2·A and S�1
F∞·A for both

However, for two or more loci with epistasis, they are models are defined in the same way. Thus when we
different. take a direct product between additive and dominance

Extended to two loci, the F2 model can still be ex- effects of two loci, i.e., between the second and third
pressed as (5) with (8) specifying corresponding ge- rows of S�1

F2·A and S�1
F2·B or S�1

F∞·A and S�1
F∞·B , the epistatic

netic-effect design variables. In matrix notation, effects are defined in the same way. However, when we
take a direct product of the second and third rows of

GAB � SF2·AB E F2·AB � [S F2·A � S F2·B]E F2·AB S�1
F2·A or S�1

F∞·A with the first row of S�1
F2·B or S�1

F∞·B , the additive
and dominance effects for locus A become different for
the two models due to the difference of the constant
term of the one-locus models (the first row of S�1

F2·B and
S�1

F∞·B). This is the reason that the specification of the
constant term at one locus is important for the specifi-
cation of the genetic effects at multiple loci. This argu-

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 �1⁄2 1 �1⁄2 1 �1⁄2 �1⁄2 1⁄4
1 1 �1⁄2 0 1⁄2 0 1⁄2 0 �1⁄4
1 1 �1⁄2 �1 �1⁄2 �1 �1⁄2 1⁄2 1⁄4
1 0 1⁄2 1 �1⁄2 0 0 1⁄2 �1⁄4
1 0 1⁄2 0 1⁄2 0 0 0 1⁄4
1 0 1⁄2 �1 �1⁄2 0 0 �1⁄2 �1⁄4
1 �1 �1⁄2 1 �1⁄2 �1 1⁄2 �1⁄2 1⁄4
1 �1 �1⁄2 0 1⁄2 0 �1⁄2 0 �1⁄4
1 �1 �1⁄2 �1 �1⁄2 1 1⁄2 1⁄2 1⁄4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�

a 1

d 1

a 2

d 2

aa

ad

da

dd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. ment extends to the specification of genetic effects at
three or more loci through the direct product.

In comparison, the two-locus F∞ model does look sim-
pler and has thus been used extensively in inbred line
and crossbred population mean analyses (e.g., Mather
and Jinks 1982). However, the two-locus F∞ model is(11)
not quite appropriate for use in QTL mapping analysis

and with epistasis in a segregating population, such as an
F2. With the dependence between the dominance effectsE F2·AB � S �1

F2·AB GAB � [(S �1
F2·A)� � (S �1

F2·B)�]�GAB

and the dominance � dominance effect, the model
makes the partition of genetic variance and interpreta-
tion of genetic effects with epistasis unnecessarily com-
plicated. This problem would increase as more loci with
epistasis are considered in a QTL mapping analysis.
When analyzing the variance of cross populations,

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1⁄16
1⁄8 1⁄16

1⁄8 1⁄4 1⁄8 1⁄16
1⁄8 1⁄16

1⁄8 1⁄4 1⁄8 0 0 0 �1⁄8 �1⁄4 �1⁄8
�1⁄8 �1⁄4 �1⁄8 1⁄4 1⁄2 1⁄4 �1⁄8 �1⁄4 �1⁄8

1⁄8 0 �1⁄8 1⁄4 0 �1⁄4 1⁄8 0 �1⁄8
�1⁄8 1⁄4 �1⁄8 �1⁄4 1⁄2 �1⁄4 �1⁄8 1⁄4 �1⁄8

1⁄4 0 �1⁄4 0 0 0 �1⁄4 0 1⁄4
�1⁄4 1⁄2 �1⁄4 0 0 0 1⁄4 �1⁄2 1⁄4
�1⁄4 0 1⁄4 1⁄2 0 �1⁄2 �1⁄4 0 1⁄4

1⁄4 �1⁄2 1⁄4 �1⁄2 1 �1⁄2 1⁄4 �1⁄2 1⁄4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G 22

G 21

G 20

G 12

G 11

G 10

G 02

G 01

G 00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Mather and Jinks (1982, Chap. 7) actually converted
the F∞ model parameters to the F2 model parameters
for analysis and interpretation.

For more discussion on a comparison of the two mod-
els, see Van Der Veen (1959) and Kao and Zeng (2002).
Van Der Veen (1959) also discussed another model,(12)
called the mixed-metric model. It is just a mixture ofThis model directly follows Cockerham (1954) and first
the F2 and F∞ models—using the dominance effects fromappeared in Anderson and Kempthorne (1954).
the F∞ model and others from the F2 model. This mixed-Cockerham and Zeng (1996) used it for marker analy-
metric model behaves basically like an F2 model in termssis in design III. The departure point (�) is still the mean
of the estimation of genetic effects and is rarely usedof an F2 population in Hardy-Weinberg and linkage
in QTL analysis. Many other specialized genetic modelsequilibrium.
have also been proposed over the years for a variety ofIn this case, since the means of the w and v variables
specialized populations and applications (e.g., Griffingare scaled to zero for the population, the effects in the
1956; Hayman 1957; Eberhart and Gardner 1966;model are all orthogonal for two or more loci in Hardy-
Hill 1982).Weinberg and linkage equilibrium. Thus the definitions

The orthogonal property of the F2 model applies onlyof additive and dominance effects of each locus are
for loci with allelic frequencies of one-half and in Hardy-consistent with respect to the other loci and with respect
Weinberg and linkage equilibrium. The question thento the epistatic effects in an F2 population. This means
arises as to what model we might use for generalizedthat the definition of a as well as d is the same whether or
allelic frequencies. Prior to addressing this question,not other (independently segregating) loci or epistatic
we discuss another model proposed by Cheverud andeffects are fitted in the regression model. This orthogo-
Routman (1995) and Cheverud (2000).nal property is very important and useful for QTL analy-

Unweighted regression model: Recently, Cheverudsis. In contrast, the F∞ model does not have this property
as explained above. and Routman (1995) and Cheverud (2000) proposed
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a model, which is equivalent to the regression model a factor of 2 and the dominance � dominance effect by
a factor of 4⁄9 . [In presenting and discussing the model,with model design variables,
Cheverud and Routman (1995) and Cheverud (2000)
made a few errors, however. They mistakenly claimed,
particularly in Cheverud (2000), that they followed thew �

⎧
⎪
⎨
⎪
⎩

1 for AA

0 for Aa

�1 for aa

and v �

⎧
⎪
⎨
⎪
⎩

�1⁄3 for AA
2⁄3 for Aa

�1⁄3 for aa .
model in Falconer and Mackay (1996), which is an
F∞ model, and extended it to two loci. Equations 4.1–4.4(13)

of Cheverud (2000) for one locus are not correct forThe specification of this model at one locus is
the design variables provided. Equations 4.8 and 4.9 also
do not follow Equation 4.7 and Table 4.1 of Cheverud
(2000).]GA � SUWR·AEUWR·A �

⎡
⎢
⎢
⎣

1 1 �1⁄3
1 0 2⁄3
1 �1 �1⁄3

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

�

a

d

⎤
⎥
⎥
⎦ Cheverud and Routman (1995) called it the un-

weighted regression (UWR) model because the depar-

(14)

and ture point (�) is the unweighted (or equally weighted)
average of the nine genotypic values for two loci and
the three genotypic values for one locus. In this model,
the mean of the v variable is zero if the three genotypesEUWR·A � S�1

UWR·AGA �

⎡
⎢
⎢
⎣

1⁄3 1⁄3 1⁄3
1⁄2 0 �1⁄2

�1⁄2 1 �1⁄2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

G 2

G 1

G 0

⎤
⎥
⎥
⎦
.

have equal frequencies.
Again, the additive and dominance effects are defined

(15)

Extending it to two loci, we have in the same way as that of the F2 and F∞ models for one
locus, but are different for two or more loci with epistasis

GAB � SUWR·ABEUWR·AB � [SUWR·A � SUWR·B]EUWR·AB due to the difference in the departure point. Also, the
two-locus epistatic effects are defined in the same way

with
as those in the F2 and F∞ models.

In introducing the UWR model, Cheverud and
Routman (1995) made a few claims that are controver-
sial. They tried to distinguish this model from the tradi-
tional least-squares model such as the F2 model or the
general two-allele model discussed below. They termed
the UWR model as a “physiological genetic model” and

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G 22

G 21

G 20

G 12

G 11

G 10

G 02

G 01

G 00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 �1⁄3 1 �1⁄3 1 �1⁄3 �1⁄3 1⁄9
1 1 �1⁄3 0 2⁄3 0 2⁄3 0 �2⁄9
1 1 �1⁄3 �1 �1⁄3 �1 �1⁄3 1⁄3 1⁄9
1 0 2⁄3 1 �1⁄3 0 0 2⁄3 �2⁄9
1 0 2⁄3 0 2⁄3 0 0 0 4⁄9
1 0 2⁄3 �1 �1⁄3 0 0 �2⁄3 �2⁄9
1 �1 �1⁄3 1 �1⁄3 �1 1⁄3 �1⁄3 1⁄9
1 �1 �1⁄3 0 2⁄3 0 �2⁄3 0 �2⁄9
1 �1 �1⁄3 �1 �1⁄3 1 1⁄3 1⁄3 1⁄9

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�

a 1

d 1

a 2

d 2

aa

ad

da

dd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

its epistasis “physiological epistasis” because it does not
depend on allelic frequencies. They referred to a model
such as (11) or (18) below as a “statistical genetic model”
and its epistasis as “statistical epistasis.” This physiologi-
cal vs. statistical argument is unnecessary and potentially

(16) misleading. All these models are statistical descriptions
of the differences and variation of different genotypicand
values in reference to different starting points or popula-

EUWR·AB � S�1
UWR·ABGAB � [(S�1

UWR·A)� � (S�1
UWR·B)�]�GAB tions. If it is preferred, one can actually define numerous

models that are independent of allelic frequencies. Thewith
F2 model is an unweighted regression model based on
gametes in linkage equilibrium, which also has a popula-
tion interpretation.

However, the notion of a physiological model is in-
tended to imply that the effects defined and estimated
from it would be independent of the study population.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�

a 1

d 1

a 2

d 2

aa
ad
da
dd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1⁄9 1⁄9 1⁄9 1⁄9 1⁄9 1⁄9 1⁄9 1⁄9 1⁄9
1⁄6 1⁄6 1⁄6 0 0 0 �1⁄6 �1⁄6 �1⁄6

�1⁄6 �1⁄6 �1⁄6 2⁄6 2⁄6 2⁄6 �1⁄6 �1⁄6 �1⁄6
1⁄6 0 �1⁄6 1⁄6 0 �1⁄6 1⁄6 0 �1⁄6

�1⁄6 2⁄6 �1⁄6 �1⁄6 2⁄6 �1⁄6 �1⁄6 2⁄6 �1⁄6
1⁄4 0 �1⁄4 0 0 0 �1⁄4 0 1⁄4

�1⁄4 1⁄2 �1⁄4 0 0 0 1⁄4 �1⁄2 1⁄4
�1⁄4 0 1⁄4 1⁄2 0 �1⁄2 �1⁄4 0 1⁄4

1⁄4 �1⁄2 1⁄4 �1⁄2 1 �1⁄2 1⁄4 �1⁄2 1⁄4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G 22

G 21

G 20

G 12

G 11

G 10

G 02

G 01

G 00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Conceptually, the UWR model, like the F∞ model, has a
problem of multilocus inconsistency in practice, letting
alone whether it is population independent. The effects
defined in a two-locus system are different from those
in a three-locus or multiple locus system. The genetic(17)
effects defined and estimated for pairwise loci separately
are not the same as those for multiple loci. For example,Equation 17 is equivalent to Equations 4.8 and 4.9 of

Cheverud (2000). This is the basis for our reconstruc- applied to a mapping population, such as an F2, for QTL
analysis, the definitions of the additive and dominancetion of their model. There is a small, nonconsequential

difference between the two presentations. The additive � effects for locus A when analyzed with locus B are actu-
ally different from those when analyzed with locus C fordominance and dominance � additive effects differ by
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a two-locus analysis, because the effects depend on other of the F2 model applies only to a population where
allelic frequencies are one-half. In an association studyloci fitted or not fitted in the model. The argument that

the genetic effects estimated from a physiological model in a natural population, allelic frequencies vary from
marker to marker and from QTL to QTL. In terms ofwould be independent of the study population is wishful

thinking. modeling QTL, it is desirable to have a model that has
the orthogonal property for a variety of allelic frequencyCheverud and Routman (1995) argued that the rea-

son to separate physiological epistasis from statistical distributions.
Let us consider a locus of two alleles with allelic fre-epistasis is that physiological epistasis also contributes

to the additive and dominance genetic variances and quency p for A and 1 � p for a. Define an indicator
variable for alleles bystatistical epistasis does not contain all of the physiologi-

cal epistasis. This is a misunderstanding. It is known that
the epistatic effects defined for a reference population, z �

⎧
⎨
⎩

1 for A

0 for a
and x � z � E(z) � z � p �

⎧
⎨
⎩

1 � p for A

�p for a ,such as that with allelic frequencies one-half, would
contribute positively or negatively to the additive and

where x is a standardized indicator variable with meandominance genetic variances in a population where the
zero.allelic frequencies are not one-half, because the epistatic

For regression model (1), we can use genetic-effecteffects are higher-order statistics. This is similar to the
design variablessituation in which the dominance effect defined for

the allelic frequency one-half would contribute either
positively or negatively to the additive effect and additive w � x1 � x2 �

⎧
⎪
⎨
⎪
⎩

2(1 � p) for AA

1 � 2 p for Aa

�2 p for aa

and v � �2 x 1x 2 �

⎧
⎪
⎨
⎪
⎩

�2(1 � p)2 for AA

2 p(1 � p) for Aa

�2 p 2 for aa ,variance when the allelic frequency is not one-half, a
justification for the general two-allele (G2A) model dis- (18)
cussed below. An orthogonal model defined in one pop-

where x 1 and x 2 are for the two alleles in an individual.ulation would not necessarily be orthogonal in another
This is called the G2A model. Note that the v variablepopulation where the assumption for the orthogonality
is proportional to the product of x 1 and x 2 , which ex-is violated. However, the situation for the F∞ and UWR
plains why the dominance effect is an interaction effectmodels is different. The models are not orthogonal in
between the two alleles within a locus. Also note thatany relevant population for a quantitative genetics study.
when p � 1⁄2 , (18) reduces to (8) and the G2A modelThus when applied to a segregating population, such
reduces to the F2 model.as an F2 population, it is not surprising to find that the

In matrix notation, the G2A model isepistatic effects would contribute to the additive and
dominance variances either positively or negatively. This
is not because the F∞ model or the UWR model naturally
has more (or less) epistasis. The definition of epistasis GA � SG2A·AEG2A·A �

⎡
⎢
⎢
⎢
⎣

1 2(1 � p) �2(1 � p)2

1 1 � 2p 2p(1 � p)

1 �2p �2p 2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

�

a

d

⎤
⎥
⎥
⎥
⎦

for the F∞ model and the UWR model is the same as
that for the F2 model. But the additive and dominance

(19)effects defined in those models are different and insuf-
ficient to account for the additive and dominance effects

andin the application population.
Also, as shown in the numerical example below, no

matter what model is used, the variance explained by
different models for the same analysis is actually the EG2A·A � S�1

G2A·AGA �

⎡
⎢
⎢
⎢
⎣

p 2 2p(1 � p) (1 � p)2

p 1 � 2p �(1 � p)

�1⁄2 1 �1⁄2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

G 2

G 1

G 0

⎤
⎥
⎥
⎥
⎦

.
same, and no model in the current discussion can ex-
plain more epistasis than others. The conclusion by

(20)Routman and Cheverud (1997) that one can use the
UWR model rather than other models to find more In this model, both w and v, by design, are scaled to
epistasis in an F2 population is unfounded. have mean zero for a population in Hardy-Weinberg

Incidentally, the regression model also provides a sta- equilibrium. Note that the definition of the dominance
tistical way to analyze and test different genetic effects effect is independent of allelic frequency for one locus,
and variance components. If a model is orthogonal, the but not for multiple loci.
tests for different effects and variance components are For two loci,
independent. This is an advantage of the orthogonal

GAB � SG2A·ABEG2A·AB � [SG2A·A � SG2A·B]EG2A·ABmodel. Otherwise, a test for epistasis can still be per-
formed by the comparison of test statistics between the EG2A·AB � S�1

G2A·ABGAB � [(S�1
G2A·A)� � (S�1

G2A·B)�]�GAB .
full and reduced models with and without epistatic

Details of SG2A·AB and S�1
G2A·AB are given in Table 1. Theyterms.

General two-allele model: The orthogonal property are simply the direct products of the matrices for loci
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A and B in (19) and (20) with some rearrangement of estimation of genetic effects in a reduced model. For
example, if two loci are in linkage disequilibrium, athe columns and rows.

In this model, a � p(G 2 � G 1) � (1 � p)(G 1 � G 0) separate estimation of the additive and dominance ef-
fects for each locus will include part of the effects offor one locus, or a 1 � p 1(G 2· � G 1·) � (1 � p 1)(G 1· �

G 0·) for two loci, where · denotes the mean, i.e., G 2· � the other locus. By the same argument, if two loci are
p 2

2G 22 � 2p 2(1 � p 2)G 21 � (1 � p 2)2G 20 . Traditionally, in Hardy-Weinberg and/or linkage disequilibria with
a in this model is called the average effect, the allelic other loci, the definition and statistical estimation of
substitution effect averaged by allelic frequencies for genetic effects for the two loci are affected by the dis-
different genotypes. The term average effect is used to equilibria between the two loci and the other loci. If
distinguish it from a in the F∞ or the F2 model, which the other loci are identified, one way to reduce this
is usually called the additive effect, as this average effect is influence is to fit all these loci simultaneously in a regres-
frequency dependent (Falconer and Mackay 1996). sion model for estimation, if feasible. So in a QTL analy-
However, as emphasized throughout the article, the ad- sis, when multiple loci are detected, it is always better to
ditive effect also depends on the model as a’s in the F∞, estimate the effects of multiple loci, including epistasis,
F2, and UWR models are different in the context of together.
multiple loci with epistasis.

What is the advantage of using the G2A model as
compared to others, such as the F2 or the F∞ models for A NUMERICAL EXAMPLE
studying genetic effects and epistasis in a population

We use a numerical example to illustrate variouswhere allelic frequencies are not one-half? Genetically,
points discussed and explore the properties and con-a major advantage is that the partition of genetic effects
straints of different models. We simulate three loci withis directly related to the partition of the genetic variance.
the assumption that there is no three-locus epistasisIn an equilibrium population (in Hardy-Weinberg and
but two-locus epistasis for pairs of loci. We discuss fourlinkage equilibrium), the additive effects contribute to
different genotypic configurations with different allelicthe additive variance, the dominance effects contribute
frequencies and linkage equilibrium or disequilibrium,to the dominance variance, etc. There is no covariance
assuming Hardy-Weinberg equilibrium. For three loci,between the genetic effects, due to the orthogonal prop-
the gametic frequencies can be expressed aserty of the model.

This orthogonal property is also convenient for statis- pijk � piqjrk � pi(�1)j�kD23 � qj(�1)i�kD13 � rk(�1)i�jD12,
tical tests and estimation of QTL effects, as the effects

for i, j, k � 0, 1,can be tested and estimated separately, although simul-
taneous estimation will always perform better statisti-

assuming no third-order linkage disequilibrium (D123 �
cally.

0), where pi, q j , and rk are allelic frequencies at loci 1,
Hardy-Weinberg and linkage disequilibria do not

2, and 3, and the D’s are linkage disequilibria. The fourchange the definitions and also statistical estimation of
cases are as follows:the genetic effects with respect to the loci defined in a

full model. In the above discussion for two loci with nine Case 1: p � 1⁄2 and D � 0 (Table 3). In this case, p1 �
genotypic values and nine parameters, given a genetic- q1 � r1 � 0.5 and D12 � D23 � D13 � 0.
effect design matrix there is a unique solution for the Case 2: p � 1⁄2 and D � 0 (Table 4). In this case, p1 �
parameter values in terms of the genotypic values. In q1 � r1 � 0.5, D12 � D23 � 0.125, and D13 �
the next section, we give a numerical example of three 0.064.
loci to show that the genetic effects for each model are Case 3: p � 1⁄2 and D � 0 (Table 5). In this case, p1 �
the same for different configurations of allele frequen- 0.7, q1 � 0.6, r1 � 0.3, and D12 � D23 � D13 �
cies and linkage disequilibrium in the full model, but 0.
not necessarily in a reduced model. In the appendix, Case 4: p � 1⁄2 and D � 0 (Table 6). In this case, p1 �
we show this for the relatively simple case of a haploid 0.7, q1 � 0.6, r1 � 0.3, D12 � D23 � 0.112, and
model with two loci. D13 � 0.053.

Disequilibrium will introduce genetic covariance be-
The genotypic values are presented in Table 2 and fol-tween different effects. Since the genetic effects esti-
low an F2 model with all additive, dominance, and pair-mated in a disequilibrium population in the full model
wise epistatic effects being one and no three-locus epista-are the same as those in the equilibrium population for
sis. This configuration of genotypic values is given inthe loci concerned (if the loci are not in disequilibrium
Table 2. To minimize sampling effects, we simulatewith other loci), the additive, dominance, and epistatic
100,000 individuals following the genotypic frequencyvariances estimated in a disequilibrium population are
configuration for each case. The genotypic values arestill the same as those in the equilibrium population.
regressed to genetic-effect design variables of differentBut there are covariances between different genetic ef-
models for one, two, or three loci. No environmentalfects due to disequilibrium.

However, disequilibria will change the definition and variance is considered. Results of parameter estimation
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TABLE 2

Genotypic values used for the numerical example

AA Aa aa

CC Cc cc CC Cc cc CC Cc cc

BB 2.25 2.25 �1.75 2.25 2.25 �1.75 �1.75 �1.75 �1.75
Bb 2.25 2.25 �1.75 2.25 2.25 �1.75 �1.75 �1.75 �1.75
bb �1.75 �1.75 �1.75 �1.75 �1.75 �1.75 �1.75 �1.75 2.25

and residual genetic variance for each analysis are given same for the same analysis. Different models just provide
different ways to partition the genetic effects with thein Tables 3–6.

Table 3 shows the comparison of the F2, F∞ , and UWR same variance, and the orthogonal model does provide
a convenient way to estimate and interpret differentmodels for the case p � 1⁄2 and D � 0. As expected,

estimates of the additive and dominance effects are the genetic effects. Note in this case it just happens that
when all effects of three loci are fitted, the F∞ model givessame for the three models if the epistatic effects are not

fitted in the regression; otherwise they are different. zero additive and dominance effects and may suggest no
main effects, only epistatic effects. So, modeling doesSince genotypic frequencies follow from the F2 ratio,

estimates of the additive and dominance effects under matter when it comes to genetic interpretation.
Table 4 shows the comparison for the case p � 1⁄2 andthe F2 model are independent of the estimation of the

epistatic effects, showing the orthogonal property. How- D � 0. Since the three models give the same estimates
of main effects when epistatic effects are not fitted, onlyever, estimates of the additive and dominance effects

under the F∞ and UWR models are different when the the F2 estimates are given. As the loci are in linkage
disequilibrium, estimates of the genetic effects (mainepistatic effects are also estimated.

Also all three models give the same estimates of epi- and epistatic effects) in reduced models are biased by
linkage disequilibrium, and the separate and joint esti-static effects as expected. However, in this case, we did

not simulate three-locus epistasis; otherwise estimates mations are different. However, they are unbiased in
the full model, a point discussed above and also in theof the pairwise epistatic effects would be different if the

three-locus epistatic effect is fitted for the F∞ and UWR appendix. This is also shown in Tables 5 and 6.
For unequal allelic frequencies (the case p � 1⁄2 andmodels, but not for the F2 model. No matter which

model is used, the genetic variance explained is the D � 0), we compare the G2A model with the other

TABLE 3

Estimates of QTL effects by the F2, F∞, and UWR models for p � 1⁄2 and D � 0

Loci 1 and 2 Loci 1 and 3 Loci 2 and 3

� 2 � a 1 d 1 a 2 d 2 a 3 d 3 aa ad da dd aa ad da dd aa ad da dd

F2 3.19 0.00 1.00 1.00
F∞ 3.19 �0.50 1.00 1.00
UWR 3.19 �0.16 1.00 1.00

F2 2.44 0.00 1.00 1.00 1.00 1.00
F∞ 2.44 �1.00 1.00 1.00 1.00 1.00
UWR 2.44 �0.33 1.00 1.00 1.00 1.00

F2 1.87 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F∞ 1.87 �0.75 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00
UWR 1.87 �0.30 0.84 0.83 0.84 0.83 1.00 1.00 1.00 1.00

F2 1.69 0.00 1.00 1.00 1.00 1.00 1.00 1.00
F∞ 1.69 �1.50 1.00 1.00 1.00 1.00 1.00 1.00
UWR 1.69 �0.50 1.00 1.00 1.00 1.00 1.00 1.00

F2 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F∞ 0.00 �0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UWR 0.00 �0.42 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

� 2 is the unexplained residual genetic variance. The total genetic variance is 3.94.
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TABLE 4

Estimates of QTL effects by the F2, F∞, and UWR models for p � 1⁄2 and D � 0

Loci 1 and 2 Loci 1 and 3 Loci 2 and 3

� 2 � a 1 d 1 a 2 d 2 a 3 d 3 aa ad da dd aa ad da dd aa ad da dd

F2 3.14 0.77 1.03 0.45
3.08 0.77 1.12 0.27
3.15 0.77 1.03 0.45
2.89 0.77 0.62 0.41 0.81 0.16
2.79 0.77 0.82 0.42 0.82 0.42
2.90 0.77 0.81 0.16 0.62 0.41
2.71 0.77 0.62 0.40 0.50 0.06 0.62 0.40

F2 1.76 0.31 1.00 1.01 1.13 0.76 1.50 1.24 1.49 1.27
F∞ 1.76 �0.25 0.38 0.37 0.38 0.12 1.50 1.24 1.49 1.27
UWR 1.76 0.05 0.79 0.80 0.88 0.55 1.50 1.24 1.49 1.27

F2 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F∞ 0.00 �0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UWR 0.00 �0.42 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

� 2 is the unexplained residual genetic variance. The total genetic variance is 3.73.

models in Table 5. In this case, the G2A model shows of estimates are quite complicated. The estimates in
the full and reduced models are all different. In thisthat the estimation of the additive and dominance ef-

fects is independent of epistatic effects. The small differ- example, some estimates in the reduced models are
even negative. Although in the full model the estimationence in different estimates for the G2A model is due

to sampling. of genetic effects specified by a model is consistent and
independent of the genotypic frequency configurationWith both unequal allelic frequencies and linkage

disequilibrium (the case p � 1⁄2 and D � 0) in Table 6, as long as all relevant genotypes are observed, in realty
the so-called full model is unknown and can be verythe estimation of genetic effects and the interpretation

TABLE 5

Estimates of QTL effects by the F2, F∞, UWR, and G2A models for p � 1⁄2 and D � 0

Loci 1 and 2 Loci 1 and 3 Loci 2 and 3

� 2 � a 1 d 1 a 2 d 2 a 3 d 3 aa ad da dd aa ad da dd aa ad da dd

F2 3.67 �0.39 0.70 0.70
3.45 �0.31 0.84 0.85
1.58 0.56 1.50 1.51

G2A 3.67 �0.16 0.42 0.70
3.45 �0.16 0.67 0.85
1.58 �0.16 2.10 1.51

F2 1.04 0.19 0.69 0.68 0.84 0.85 1.50 1.50
G2A 1.04 �0.16 0.41 0.68 0.68 0.85 2.10 1.50

F2 3.12 �0.48 0.52 0.54 0.52 0.54 0.99 0.98 0.98 1.03
F∞ 3.12 �0.76 0.03 0.02 0.03 0.02 0.99 0.98 0.98 1.03
UWR 3.12 �0.63 0.36 0.36 0.36 0.36 0.99 0.98 0.98 1.03
G2A 3.12 �0.16 0.42 0.71 0.67 0.85 0.48 0.57 0.78 1.03

F2 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F∞ 0.00 �0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UWR 0.00 �0.42 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G2A 0.00 �0.16 0.42 0.70 0.67 0.84 2.10 1.50 0.48 0.60 0.80 1.00 0.84 0.60 1.40 1.00 1.12 0.80 1.40 1.00

� 2 is the unexplained residual genetic variance. The total genetic variance is 3.83.
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TABLE 6

Estimates of QTL effects by the F2, F∞, UWR, and G2A models for p � 1⁄2 and D � 0

Loci 1 and 2 Loci 1 and 3 Loci 2 and 3

� 2 � a 1 d 1 a 2 d 2 a 3 d 3 aa ad da dd aa ad da dd aa ad da dd

F2 3.88 0.34 0.04 �0.60
3.62 0.24 0.80 �0.23
1.12 1.23 1.75 1.60

G2A 3.88 0.40 0.28 �0.60
3.62 0.40 0.85 �0.23
1.12 0.40 2.39 1.60

F2 0.92 1.49 �0.46 �0.58 �0.35 �0.50 1.87 1.79
G2A 0.92 0.40 �0.23 �0.58 �0.25 �0.50 2.58 1.79

F2 2.93 �0.21 0.38 0.38 0.62 �0.08 1.70 1.22 1.69 1.24
F∞ 2.93 �0.05 �0.23 �0.24 �0.23 �0.70 1.70 1.22 1.69 1.24
UWR 2.93 �0.23 0.18 0.18 0.34 �0.29 1.70 1.22 1.69 1.24
G2A 2.93 0.14 0.42 0.70 1.10 0.31 0.88 0.73 1.44 1.24

F2 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F∞ 0.00 �0.75 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
UWR 0.00 �0.42 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
G2A 0.00 �0.16 0.42 0.70 0.67 0.84 2.10 1.50 0.48 0.60 0.80 1.00 0.84 0.60 1.40 1.00 1.12 0.80 1.40 1.00

� 2 is the unexplained residual genetic variance. The total genetic variance is 3.98.

complex. Any practical estimation would be almost al- and between loci can be clearly and readily analyzed,
estimated, and interpreted. Here the consistency meansways in a reduced model and could be influenced by

disequilibrium and epistasis between detected and un- that the effect of a QTL is consistently defined in a
reference equilibrium population for one, two, or moredetected loci.
loci. In statistics, this is called orthogonality. This prop-
erty is particularly important for the study of epistasis.

DISCUSSION Orthogonality ensures that the additive, dominance,
and epistatic effects can be independently estimated forIn this article, we compare several models for analyz-
one, two, three, or more loci in the reference populationing QTL effects and epistasis. The difference among
where the model is defined and interpreted. Thus, if thethe F2, F∞, and UWR models is in the definition of the
number of QTL is incorrectly identified, which seems todominance-effect design variable, which reflects the dif-
be always the case in practice, the parameter values forference of the mean (departure point) for a model.
those identified QTL can still be consistently estimated.This difference does not affect the definition of additive

Disequilibrium complicates matters. Linkage disequi-and dominance effects at one locus, but does at multiple
librium would complicate the definition of genetic ef-loci with epistasis. The same argument also applies to
fects, the partition of genetic variance, and could cer-the definition of pairwise epistatic effects if higher-order
tainly bias the estimation of parameter values for thoseepistasis is considered, which is not specifically analyzed
identified QTL if the QTL model (number and genomicin this article. This has implications for QTL analysis.
position of QTL) is inferred incorrectly. It could alsoOne implication is that estimates of additive and domi-
complicate the detection of QTL and epistasis, i.e.,nance effects are not consistent for the F∞ model as well
model identification. If multiple QTL are detected, itas for the UWR model in a mapping population such
is always preferable to have different QTL effects, in-as an F2 population, as the estimates depend on whether
cluding epistatic effects, estimated together if possible.epistatic effects are fitted in the model. This could cause
This joint estimation of additive, dominance, and epi-unnecessary complications in interpreting the genetic
static effects is also consistent with the partition of ge-basis and architecture of quantitative trait variation in
netic variance in the mapping population and is verya mapping population.
convenient for the interpretation of the estimated ge-When modeling QTL, the consistency of model pa-
netic variances and covariances explained by QTL effects.rameters in a multilocus setting is an important consid-
The variances of QTL effects would correspond to thoseeration. It is important for a model to be multilocus com-

parable and consistent, so that the relationships within partitions in an equilibrium population, and covari-
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ances between QTL effects reflect the level of disequilib- nance effects under the F∞ model should be estimated
together with the epistatic effects. Otherwise, the ge-rium in the estimation population. This is the approach
netic interpretation of heterosis is different. If the domi-of multiple-interval mapping (Kao et al. 1999; Zeng et
nance effects are estimated for each locus separately,al. 1999) that estimates the genetic effects, including
which would be equivalent to those under the F2 modelepistatic effects, and partitions the genetic variances for
for unlinked loci, the dominance � dominance effectsmultiple loci simultaneously in QTL analysis.
should not be counted as a part of heterosis.With a finite sample size in many QTL mapping exper-

Different investigators may prefer different models.iments, there is a practical problem in estimating the
Model parameters are transferable between differentgenetic effects, including epistatic effects, in a “full
models (Van Der Veen 1959). However, it would makemodel” as some genotypes involving two or more loci
much better sense to use an orthogonal model for QTLmay be observed rarely or not at all. In multiple-interval
analysis in a segregating population for the consistencymapping, one way to deal with this problem is to select
in estimating genetic effects and partitioning genetica subset of statistically significant genetic effects, includ-
variance components.ing epistatic effects, for simultaneous estimation, given

the identification of multiple QTL or multiple genomic We are grateful to Bill Hill for comments and to Chris Basten for
many helpful suggestions in this presentation. This work was partiallypositions.
supported by National Institutes of Health grant GM45344 and U.S.Another point is that different models can interpret
Department of Agriculture Plant Genome grant 2003-00673.some important genetic quantities differently. For ex-

ample, heterosis is measured as the difference between
the F1 and the mean of parental lines on some quantita-
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APPENDIX

We demonstrate that the partial regression coefficients in a disequilibrium population are equal to the simple
regression coefficients in an equilibrium population in the full model for a relatively simple case of a two-locus
haploid model. For comparison, we also present the composition of the additive effects in a reduced model without
an epistatic effect.

Consider a locus with alleles A and a having frequencies p1 and 1 � p1, respectively. Define an indicator variable

z1 �
⎧
⎨
⎩

1 for A

0 for a
and x1 � z 1 � E(z 1) �

⎧
⎨
⎩

1 � p 1 for A

�p 1 for a .

We can express the haploid model as

G � � � a 1x 1

with
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. (A1)

If we extend the model to two loci and define indicator variables z2 and x2 for locus B accordingly, we have

G � � � a1x1 � a 2x 2 � (aa)x1x 2,

including the epistatic effect aa. Using the direct product, we obtain
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and

⎡
⎢
⎢
⎢
⎢
⎣

�

a 1

a 2

aa

⎤
⎥
⎥
⎥
⎥
⎦

�
⎡
⎢
⎣

p 1 1 � p 1

1 �1

⎤
⎥
⎦

�
⎡
⎢
⎣

p 2 1 � p 2

1 �1

⎤
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

G 11

G 01

G 10

G 00

⎤
⎥
⎥
⎥
⎥
⎦

�

⎡
⎢
⎢
⎢
⎢
⎣

p 1p 2 (1 � p 1)p 2 p 1(1 � p 2) (1 � p 1)(1 � p 2)

p 2 �p 2 1 � p 2 �(1 � p 2)

p 1 1 � p 1 �p 1 �(1 � p 1)

1 �1 �1 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

G 11

G 01

G 10

G 00

⎤
⎥
⎥
⎥
⎥
⎦

. (A3)

With four genotypes and four parameters, there is a unique relationship between the parameters and genotypic
values. This relationship will not depend on the genetic structure of the population. Whether the model is applied
to an equilibrium or disequilibrium population, the genetic effects will be the same.

Nevertheless, in the following, we show this conclusion in a different way. The genetic effects a 1, a 2 , and aa are
partial regression coefficients in the regression model. If loci are in linkage equilibrium, x 1 and x 2 are independent,
i.e., E(x 1x 2) � E(x 1)E(x 2) � 0, and the partial regression coefficients are equal to the simple regression coefficients:

a 1 �
Cov(G, x 1)

Var(x 1)
, a 2 �

Cov(G, x 2)
Var(x 2)

, aa �
Cov(G, x 1x 2)

Var(x 1x 2)
.

Note that E(z i) � E(z 2
i ) � p i and E(x i) � 0 for i � 1, 2. These variances and covariances are

Var(x 1) � E(x 2
1) � E (z 2

1) � E(z 1)2 � p 1(1 � p 1)

Var(x 2) � p 2(1 � p 2)

Var(x 1x 2) � E(x 2
1x 2

2) � E(x 2
1)E(x 2

2) � p 1(1 � p 1)p 2(1 � p 2)

Cov(G, x 1) � E(Gx 1) � E(Gz 1) � E(G)p 1

� E(z 1 � 1)E(G |z 1 � 1) � p 1E(G) � p 1[p 2G 11 � (1 � p 2)G 10]

� p 1[p 1p 2G 11 � p 1(1 � p 2)G 10 � (1 � p 1)p 2G 01 � (1 � p 1)(1 � p 2)G 00]

� p 1(1 � p 1)[p 2(G 11 � G 01) � (1 � p 2)(G 10 � G 00)]
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Cov(G, x 2) � p 2(1 � p 2)[p 1(G 11 � G 10) � (1 � p 1)(G 01 � G 00)]

Cov(G, x 1x 2) � E(Gx 1x 2) � E(Gz 1z 2) � p 1E(Gz 2)

� p 2E(Gz 1) � p 1p 2E(G) � E(z 1 � 1, z 2 � 1)E(G |z 1 � 1, z 2 � 1) � p 1E(z 2 � 1)E(G |z2 � 1)

� p 2E(z 1 � 1)E(G |z1 � 1) � p 1p 2E(G)

� p 1p 2G 11 � p 1p 2[p 2G 11 � (1 � p 2)G 10] � p 2p 1[p 1G 11 � (1 � p 1)G 01]

� p 1p 2[p 1p 2G 11 � p 1(1 � p 2)G 10 � (1 � p 1)p 2G 01 � (1 � p 1)(1 � p 2)G 00]

� p 1(1 � p 1)p 2(1 � p 2)[G 11 � G 10 � G 01 � G 00].

Then for an equilibrium population, we have shown

a 1 � p 2(G 11 � G 01) � (1 � p 2)(G 10 � G 00)

a 2 � p 1(G 11 � G 10) � (1 � p 1)(G 01 � G 00)

aa � G 11 � G 10 � G 01 � G 00 . (A4)

To consider a disequilibrium population, we note that the genotypic frequencies are P 11 � p 1p 2 � D, P 10 � p 1(1 �
p 2) � D, P 01 � (1 � p 1)p 2 � D, and P 00 � (1 � p 1)(1 � p 2) � D, where D is a measure of linkage disequilibrium.
The partial regression coefficients are

⎡
⎢
⎢
⎢
⎣

a 1

a 2

aa

⎤
⎥
⎥
⎥
⎦

�

⎡
⎢
⎢
⎢
⎣

Var(x 1) Cov(x 1, x 2) Cov(x 1, x 1x 2)

Cov(x 1, x 2) Var(x 2) Cov(x 2, x 1x 2)

Cov(x 1, x 1x 2) Cov(x 2, x 1x 2) Var(x 1x 2)

⎤
⎥
⎥
⎥
⎦

�1 ⎡
⎢
⎢
⎢
⎣

Cov(G, x 1)

Cov(G, x 2)

Cov(G, x 1x 2)

⎤
⎥
⎥
⎥
⎦

(A5)

with

Cov(x 1, x 2) � E(x 1x 2) � E(z 1z 2) � E(z 1)E(z 2) � P11 � p 1p 2 � D

Cov(x 1, x 1x 2) � E(x 2
1x 2) � E((z 1 � p 1)2(z 2 � p 2)) � (1 � 2p 1)D

Cov(x 2, x 1x 2) � (1 � 2p 2)D

Var(x 1x 2) � E(x 2
1x 2

2) � E(x 1x 2)2 � E((z 1 � p 1)2(z 2 � p 2)2) � D 2

� p 1(1 � p 1)p 2(1 � p 2) � (1 � 2p 1)(1 � 2p 2)D � D 2

and

Cov(G, x 1) � E(Gx 1) � E(Gz 1) � p 1E(G) � E(z 1 � 1)E(G |z 1 � 1) � p 1E(G)

� p 1�P 11

p 1

G 11 �
P 10

p 1

G 10� � p 1[P 11G 11 � P 10G 10 � P 01G 01 � P 00G 00]

� p 1�p 1p 2 � D
p 1

G 11 �
p 1(1 � p 2) � D

p 1

G 10�
� p 1[(p 1p 2 � D)G 11 � (p 1(1 � p 2) � D)G 10 � ((1 � p 1)p 2 � D)G 01 � ((1 � p 1)(1 � p 2) � D)G 00]

� (1 � p 1)[(p 1p 2 � D)G 11 � (p 1(1 � p 2) � D)G 10] � p 1[((1 � p 1)p 2 � D)G 01 � ((1 � p 1)(1 � p 2) � D)G 00]

Cov(G, x 2) � (1 � p 2)[(p 1p 2 � D)G 11 � ((1 � p 1)p 2 � D)G 01] � p 2[(p 1(1 � p 2) � D)G 10 � ((1 � p 1)(1 � p 2) � D)G 00]

Cov(G, x 1x 2) � E(Gx 1x 2) � E(G)E(x 1x 2) � E(z 1 � 1, z 2 � 1)E(G |z 1 � 1, z 2 � 1) � p 1E(z 2 � 1)E(G |z 2 � 1)

� p 2E(z 1 � 1)E(G |z 1 � 1) � (p 1p 2 � D)E(G)

� (p 1p 2 � D)G 11 � p 1p 2�p 1p 2 � D
p 2

G 11 �
(1 � p 1)p 2 � D

p 2

G 01�
� p 2p 1�p 1p 2 � D

p 1

G 11 �
p 1(1 � p 2) � D

p 1

G 10�
� (p 1p 2 � D)[(p 1p 2 � D)G 11 � (p 1(1 � p 2) � D)G 10 � ((1 � p 1)p 2 � D)G 01 � ((1 � p 1)(1 � p 2) � D)G 00]
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� (p 1p 2 � D)((1 � p 1)(1 � p 2) � D)G 11 � (p 2(1 � p 1) � D)((1 � p 1)p 2 � D)G 10

� (p 1(1 � p 2)p 2 � D)((1 � p 1)p 2 � D)G 01 � ((1 � p 1)(1 � p 2) � D)(p 1p2 � D)G 00 .

Inserting these variances and covariances in (A5), inverting the matrix and multiplying it by the covariance vector,
one obtains

⎡
⎢
⎢
⎢
⎣

a 1

a 2

aa

⎤
⎥
⎥
⎥
⎦

�

⎡
⎢
⎢
⎢
⎣

p 2(G 11 � G 01) � (1 � p 2)(G 10 � G 00)

p 1(G 11 � G 10) � (1 � p 1)(G 01 � G 00)

G 11 � G 10 � G 01 � G 00

⎤
⎥
⎥
⎥
⎦

. (A6)

Equation (A6) is the same as (A3) and (A4) with regard to the definition of a1, a2, and aa. This shows that the
partial regression coefficients in a disequilibrium population are equal to the simple regression coefficients in the
equilibrium population in this full model with two loci and correspond to the initial model specification.

However, if we fit only the additive effects without the epistatic effect in the following regression model,

G � � � a 1x 1 � a 2x 2,

the partial regression coefficients of a1 and a2 would be

⎡
⎢
⎣

a 1

a 2

⎤
⎥
⎦

�
⎡
⎢
⎣

Var(x 1) Cov(x 1, x 2)

Cov(x 1, x 2) Var(x 2)

⎤
⎥
⎦

�1 ⎡
⎢
⎣

Cov(G, x 1)

Cov(G, x 2)

⎤
⎥
⎦
.

In this case,

a 1 � p 2(G 11 � G 01) � (1 � p 2)(G 10 � G 00) �
(1 � 2p 1)p 2(1 � p 2)D � (1 � 2p 2)D 2

p 1(1 � p 1)p 2(1 � p 2) � D 2
(G 11 � G 10 � G 01 � G 00)

a 2 � p 1(G 11 � G 10) � (1 � p 1)(G 01 � G 00) �
(1 � 2p 2)p 1(1 � p 1)D � (1 � 2p 1)D 2

p 1(1 � p 1)p 2(1 � p 2) � D 2
(G 11 � G 10 � G 01 � G 00) .

These are equal to the additive effects in the full model if D � 0, G 11 � G 10 � G 01 � G 00 � 0 (no epistasis), or p1 �
p 2 � 1⁄2 .
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