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ABSTRACT
Stochastic mechanisms can cause a group of isogenic bacteria, each subject to identical environmental

conditions, to nevertheless exhibit diverse patterns of gene expression. The resulting phenotypic subpopula-
tions will typically have distinct growth rates. This behavior has been observed in several contexts, including
sugar metabolism and pili phase variation. Under fixed environmental conditions, the net growth rate of
the population is maximized when all cells are of the fastest growing phenotype, so it is unclear what
fitness advantage is conferred by population heterogeneity. However, unlike ideal laboratory conditions,
natural environments tend to fluctuate, either periodically or randomly. Here we use a stochastic population
model to show that, during growth in such fluctuating environments, a dynamically heterogenous bacterial
population can sometimes achieve a higher net growth rate than a homogenous one. By using stochastic
mechanisms to sample several distinct phenotypes, the bacteria are able to anticipate and take advantage
of sudden changes in their environment. However, this heterogeneity is beneficial only if the bacterial
response rate is sufficiently low. Our results could be useful in the design of artificial evolution experiments
and in the optimization of fermentation processes.

PERHAPS the most apparent manifestation of stochas- survive as lysogens, with the phage DNA incorporated
into their chromosomes. The bias between these twotic mechanisms in gene expression is the heteroge-

neity of cell populations. In the simplest case, the con- outcomes depends sensitively on environmental and nu-
tritional conditions. As a final example, the switch be-centration of a constitutively expressed protein could show

some variability from cell to cell (Elowitz et al. 2002; tween the expression and nonexpression of cell surface
pili during infection of the urinary tract by E. coli occursOzbudak et al. 2002; Blake et al. 2003); more interest-

ingly, a bacterial population could split into two or more in a stochastic fashion (Low et al. 2001; Wolf and Arkin
2002). The expression of certain types of pili is thoughtgroups, each of which is characterized by a distinct state
to trigger an immune response; however, pili also facili-of gene expression. This multistability, the existence
tate the colonization of the urinary tract surface, helpingof multiple stable states of gene expression in a given
prevent bacterial removal by urine flow (Hernday etenvironment, can arise due to autocatalytic loops in cell
al. 2002). Cells in different states of pilus expressionregulatory networks (Ferrell 2002). Multistability has
therefore proliferate at different rates.been predicted or observed in a growing number of

It is clear that diverse systems are capable of generat-metabolic systems (Siegele and Hu 1997; Biggar and
ing multistability of gene expression states in cell popu-Crabtree 2001; Thattai and Shraiman 2003), as well
lations. However, all of the systems discussed aboveas in other types of networks. Several decades ago, Nov-
share three important characteristics. First, cells are ableick and Weiner (1957) found that the lac network of
to switch stochastically between the different expressionEscherichia coli was multistable: under intermediate con-
states, generating a heterogenous population. Second,centrations of an external inducer, the bacterial popula-
the rates of these transitions are functions of the envi-tion consists of cells that are either fully induced for lac
ronmental conditions, so the distribution of cells betweenexpression or not induced at all, with individual cells
the various states can vary as a function of time. Third,switching stochastically between these states (Carrier
cells in different states of gene expression exhibit dis-and Keasling 1999). Furthermore, the two cell types ex-
tinct growth rates, so the population distribution ofhibit different growth rates because of the metabolic bur-
states affects overall fitness. Under these circumstances,den imposed by futile gene expression. Similarly, cells of
we describe the cell population as being “dynamicallyE. coli, upon being infected by phage-�, are stochastically
heterogenous.” (This is in contrast to a “statically heter-driven toward one of two possible fates (Arkin et al.
ogenous” population, in which the transitions between1998): they can either be lysed by phage particles or
states are not influenced by environmental conditions.)
In a fixed environment, only one of the several subpopu-
lations of a heterogenous population can exhibit the
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if the individuals are all in this fittest state; it might compared to stochastically varying ones: in the latter
case, heterogeneity is favored over a smaller parametertherefore seem surprising that cells have not evolved

mechanisms to suppress transitions into the less fit range. Interestingly, cells grow faster in a stochastic envi-
ronment than in a periodic one of the same mean fre-states. However, we argue that in more realistic, fluctuat-

ing environments, dynamic heterogeneity might actually quency: since cells themselves respond stochastically,
they are able to ignore brief stochastic variations in theirbe beneficial.

The idea that heterogeneity might enable a popula- surroundings, modifying their states only in response
to persistent external changes. In each case, cell popula-tion to better cope with an uncertain future has a long

history. Indeed, natural selection itself is able to operate tions are able to enhance their net growth rates by
dynamically anticipating and exploiting environmentalonly once variation has arisen by mutation. More subtly,

it is possible that certain sources of increased variation, changes, perpetuating cellular states that seem disad-
vantageous at one time, but that will prove advantageoussuch as mutator responses, sexual reproduction, and

genetic recombination, can enhance survival during pe- at later times.
riods of rapid environmental change (Burger 1999;
Tanaka et al. 2003). These ideas have been supported

ANALYSIS
by the discovery of various mechanisms that increase
mutation rates in organisms under stress (Rosenberg Modeling the growth of stochastic populations: We

assume that each bacterial cell in the population is capa-2001). Heterogeneity can also be beneficial on more
rapid timescales. A compelling example is the dormancy ble of two distinct states of gene expression, as is com-

mon in many systems of interest; we label these cellularresponse, which occurs in several organisms including
plants (Cohen 1966), insects (Menu et al. 2000), and states as ca and cb. The cellular states have growth rates �a

and �b, respectively, and stochastic transitions betweenviruses (Stumpf et al. 2002). In these organisms, each
generation, a small fraction of the population remains these states occur with rate ka→b from ca to cb, and kb→a

in the reverse direction. Experimental measurementsin a protected dormant state, emerging for growth only
after some delay, thus enhancing survival through unfa- suggest that these transitions should be regarded as

Poisson processes, occurring with a constant probabilityvorable environmental epochs. Note that in all the cases
discussed in this paragraph, the populations are stati- per unit time (Low et al. 2001; Isaacs et al. 2003). For

any particular system, the rates of stochastic transitions,cally heterogenous; the main conclusion to be drawn
from these cases is that, given a broad but static distribu- and to some extent the different rates of growth, can

be derived from a sufficiently detailed model of thetion of phenotypes, the chances are increased that some
of these will remain viable after a sudden environmental underlying regulatory network (Bialek 2001; Kepler

and Elston 2001); more practically, these various rateschange. However, as we mentioned previously, bacterial
populations are often dynamically heterogenous: cells could also be determined experimentally (Siegele and

Hu 1997). To go beyond the details specific to particularcope with external changes primarily by generating spe-
cific internal responses designed to enhance fitness; any systems, we take the growth and transition rates to be

free parameters and investigate the behavior of the sys-fitness advantage that might be gained from heteroge-
neity is secondary. We wish to determine the precise tem over all possible parameter values.

We are interested in circumstances involving fluctuat-conditions under which dynamic heterogeneity is bene-
ficial. ing environments. Typically, all of the rates mentioned

above are functions of environmental conditions. For ex-We approach this problem by constructing a general
model of stochastic gene expression and population ample, consider the classic diauxie experiment (Monod

1966) in which cells of E. coli are grown in various typesgrowth, one that captures all the essential features of
the diverse systems discussed above. In our analysis, we of glucose-lactose mixtures. As discussed earlier, cell

populations under these circumstances sometimes con-allow environmental conditions to fluctuate, either peri-
odically or stochastically, and determine the net growth sist of two cell types, those uninduced for lac expression

and those fully induced; the presence of lactose tendsrates of the cell populations in each case. We find that,
when cells are able to respond much more quickly than to promote transitions into the induced state, while

the presence of glucose tends to promote the reverseexternal conditions vary, a homogenous population is
most fit. However, if the cell response rate is comparable transitions. In lactose-rich media, induced cells grow

faster since they are able to metabolize lactose; in glu-to or lower than the rate of environmental variations,
dynamic heterogeneity can actually enhance fitness. The cose-rich media, although both cell types are able to

metabolize glucose, induced cells grow slower since theydegree to which heterogeneity is beneficial depends on
the penalty incurred for being caught in an unfit state. must bear the burden of extra enzyme synthesis. Simi-

larly, the transition rates between states of pilus expres-For intermediate penalties, heterogeneity is favored,
while at extremely high or extremely low penalties, ho- sion and nonexpression during pili phase variation de-

pend on external parameters such as temperaturemogeneity can be preferable. These effects are more
pronounced for periodically varying environments as (Wolf and Arkin 2002). There is also evidence for
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growth rate differences between these states under dif-
ferent environmental circumstances (Hernday et al.
2002). For example, during urine flow, pilus-expressing
cells are able to survive by anchoring themselves to uri-
nary tract surfaces, while cells without pili are flushed
out. The latter cell type can be described as having a
negative growth rate, a constant probability per unit
time of being removed from the cell population. In the
absence of urine flow, pilus-expressing cells are able to
harvest resources less efficiently and may also become
targets of an immune response; such cells then have
the lower, possibly even a negative, growth rate.

To introduce these environmental influences into our
model, we assume that the environment can cycle be-
tween two different states, ea and eb; this can be achieved
by alternating between glucose-rich and lactose-rich me-
dia in the diauxie experiment or between the presence
and absence of urine flow for bacteria colonizing the
urinary tract. In environmental state ea, cellular state ca

is most fit, with a similar correspondence between states
eb and cb. We now make the simplifying assumption that
the situation is completely symmetric under the inter-
change of the two environmental states; that is, when
the state of the environment flips, the two cellular states
simply exchange their properties. Under a certain envi-
ronmental condition, one of the cellular states will then
be the fit state labeled c1, with growth rate �1, and the
other will be the unfit state labeled c0, with growth rate
�0 � �1; the Poisson transition rate from c0 to c1 is k1,
and that from c1 to c0 is k0 (Figure 1A). (In laboratory
experiments under fixed conditions, a population with
k1 � 0 but k0 � 0 would eventually become homogenous,

Figure 1.—A stochastic bacterial population. (A) Each cell while one with k1 � 0 and k0 � 0 would remain heteroge-
can be in one of two states, ca and cb; correspondingly, the nous. We therefore loosely use the term “heterogenous”
environment can switch between two states ea and eb. In environ- to mean “k0 � 0”.)mental state ea, cell state ca is the fit state, labeled c1 (open

The assumption of symmetry makes our analysis simplerbox), and cell state cb is the unfit state, labeled c0 (shaded
to present, but our main results will hold even in thebox); when the environmental state flips, the two cell states

exchange their properties. The growth rate of the fit state is case of asymmetric parameters. Potentially more serious
�1, and that of the unfit state is �0 � �1; Poisson transitions limitations of the model are the following. First, we have
into the fit state occur with rate k1, and those into the unfit state assumed that the duration of a cellular transition is muchoccur with rate k0. Typically, bacteria will tend to transition into

shorter than the time separation between transitions.the fit state, so k1 will usually be higher than k0. (B) Growth
In reality, cellular transitions do cost time and energy;in a periodic environment. The environment cycles between

the two states, spending a time T � 1 in each state. The however, for low enough transition rates, these costs
fraction f1 of cells in the fit state is plotted as a function of can be ignored. This is a reasonable description of actual
time, as predicted by Equation 4, for k0 � 0.5, k1 � 1.0, �� � systems: during pili phase variation, for example, transi-1.0. While the environment is fixed, more cells tend to transi-

tions occur about once per 105 generations per cell, buttion into than out of the fit state, so f1 increases. When the
are executed within a single generation. We must simplyenvironment flips, cells that were in the fit state now find

themselves in the unfit state, so f1→(1 � f1). After this event, be careful, during our analysis, not to let the switching
cells again begin to switch into the newly fit state, and so on. rates take on arbitrarily high values. Second, we have
(C) Growth in a stochastic environment. The time spent by assumed that the rate of growth in any particular cellularthe environment in a given state is now exponentially distrib-

state is independent of the number of cells in that oruted, with mean value T; this results in several brief environ-
in any other state. This assumption breaks down, formental epochs, interspersed with a few periods in which the

environment is more persistent. We generated the time course example, during growth under metabolite-limited con-
shown using a Monte Carlo simulation, then used Equation ditions in which the different subpopulations compete
4 to determine the time evolution of f1, for the same parameter with each other for nutrients (Smith and Waltmenvalues as in Figure 1B. We see that cells are able to attain

1995); similarly, it does not apply when the subpopula-much higher fitness values during the extended environmen-
tions cooperate with each other in any way, such astal periods than in a periodic environment.
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during biofilm formation (Shapiro 1998). However, cally to produce an expression for f1(t). Whenever the
environmental state changes, cells that were previouslybarring situations of competition or cooperation, our

results are still broadly applicable. in the fit state now find themselves in the unfit state,
and vice versa. Therefore, if the fraction of cells in theDynamics of population growth: We construct our dy-

namical equations in terms of the number of cells n1 in fit state just before the environmental change is f1, then
that fraction just after the change will be 1 � f1. Wethe fit state c1 and the number n0 in the unfit state c0. We

take the population to be large enough that fluctuations consider two types of environmental time variations:
periodic and stochastic (Figure 1, B and C). In thein cell numbers can be ignored. These numbers can

vary either due to growth of each subpopulation or due periodic case, the environment cycles between states ea

and eb, spending a fixed time T in each state; underto transitions between them. Thus,
these circumstances, the model can be solved analyti-
cally. In the stochastic case, the time spent in each stated

dt
n0 � �0n0 � k1n0 � k0n1

has mean value T, but can be made more or less variable;
a purely periodic environment is, of course, a limitingd

dt
n1 � �1n1 � k1n0 � k0n1 . (1) case of this. For stochastic environments, population

fitness can be determined by performing Monte Carlo
simulations. In either case, given the environmentalThe first term in each equation describes the growth
state as a function of time, we can calculate the netof the unfit and fit cell populations, with growth rates
fitness f of the population. It is convenient to choose�0 and �1, respectively; the remaining terms describe
the environmental period as our time unit, so that T �switching into the fit state with rate constant k1 and into
1; all growth and transition rates are therefore measuredthe unfit state with rate constant k0 (Figure 1A). Let n �
per environmental cycle. With this choice of units, wen0 � n1 represent the total number of cells, and define
are left with fitness as a function of three parameters,f0 � n0/n and f1 � n1/n as the fraction of cells in each
namely, the cellular transition rates into the unfit andstate. The time evolution of the total number of cells
fit states and the growth rate difference between theseis given by summing the two parts of Equation 1:
states: f � f(k0, k1, ��).

Bacterial response strategies: The switching rates k0
d
dt

n � �0n0 � �1n1 � (�0f0 � �1f1)n � �(t)n . (2)
and k1, determined by some underlying regulatory net-
work, embody the bacterial response strategy to changesHere we have introduced the population-averaged growth
in environmental conditions. We sometimes refer to k1,rate �(t), which is itself a function of time since it depends
the rate of transitions into the fit state, as the bacterialon the time-dependent fraction of cells in each state. This
response rate. The quantity ��, measuring the growthequation is easily solved to give n(t) � n(0)e�t

0�(t	)dt	 �
rate difference between the two cellular states, shouldn(0)e ���t, where we have used �. . .� to represent time
be thought of as the penalty for being caught in theaveraging. Thus, the net growth rate of the population
unfit state. It is likely that, over evolutionary time, thoseover long time periods is simply given by the time-aver-
response strategies that confer some fitness advantageaged quantity ��(t)�. Setting �� � �1 � �0 � 0, this
to cell populations growing under time variations andeffective growth rate can be written as
penalty conditions characteristic of their natural envi-
ronments have been selected (Wolf and Arkin 2003).��� � �0 � ��� f1� � �0 � ��f , (3)

Consider a passive bacterium, one that is unable to
where we have defined f � � f1� as the time-averaged switch its cellular state. In our model, since the environ-
fraction of cells in the fit state. Consider a specific exam- ment spends half its time in each of the states ea and eb,
ple: Figure 1, B and C, explicitly shows the time evolu- such an organism would have a fitness f � 0.5. In con-
tion of f1(t), for typical cases of periodic and stochastic trast, an active bacterium would be able to increase its
environments. We can see that the time-averaged quan- fitness above this level by some appropriate choice of
tity f � � f1� will be higher in the second case than in transition rates k0 and k1. It is clear that increasing the
the first, so the net growth rate of the population will rate k1 of transitions into the fit state will be beneficial;
be correspondingly higher. As the value of f is varied however, it is not clear how much benefit can be derived
between zero and one, this net growth rate varies lin- by allowing a rate k0 of transitions into the unfit state.
early between �0 and �1; f is therefore the natural mea- In the following section we explore, for different types
sure of population fitness. of fluctuating environments and different penalties ��,

To calculate f, we must first determine the dynamics the transition rates k0 and k1 that maximize fitness.
of f1 by applying Equation 1. This gives

RESULTSd
dt

f1 � k1 � (�� � k0 � k1)f1 � �� f 2
1 . (4)

Growth in periodic environments: Figure 2 shows, for
population growth in a periodic environment, the cir-In a fixed environment, Equation 4 can be solved analyti-
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Figure 2.—Beneficial heterogeneity. Our central result is
that transitions into the unfit state, at some rate k0 � 0, can
enhance cell fitness in certain circumstances. This can be seen
by exploring the behavior of the fitness, f(k0, k1, ��), as the
cell response rate, k1, and the fitness penalty, ��, are varied.
The hatched region shows, for growth in periodic environ-
ments, those parameter values for which k0 � 0 produces a
fitness increase relative to k0 � 0. The cross-hatched region
shows, for growth in Poisson environments, those parameters
values for which a fitness increase of at least 0.01 is attained
for some k0 � 0. This region was determined by performing
Monte Carlo simulations (see Figure 4). We see that heteroge-
neity enhances fitness over a larger parameter range in a
periodic environment than in a Poisson environment. Note
that, if the cell response rate is sufficiently high (k1 � 1.4),
then k0 � 0 is always preferred.

cumstances under which transitions into the unfit state
enhance fitness. We see that, for k1 � 1.4, k0 � 0 is
always the optimal solution. For 1.4 � k1 � 1, the situa-
tion becomes more interesting. For very low penalties,
it still does not pay to maintain an unfit subpopulation

Figure 3.—Growth in periodic environments. (A) We plotin anticipation of environmental changes; for extremely
the fitness, f, as a function of the transition rate into the unfithigh penalties, cells that transition to the unfit state
state, k0, for k1 � 0.2, �� � 10. This allows us to determineare lost almost immediately, so it becomes wasteful to the optimal transition rate k0

opt that maximizes fitness. (B) k0
opt

maintain an unfit subpopulation; for intermediate pen- is shown for various values of k1 and ��. Note that, beyond
alty values, however, heterogeneity is actually preferred. some value of k1, k0

opt � 0. (C) The fitness f obtained at k0 �
k0

opt (dotted line) is compared with that obtained at k0 � 0As the response rate drops even lower, for k1 � 1, hetero-
(solid line). The two curves are identical beyond the point atgeneity is always preferred even at very low or high
which k0

opt � 0; the curves diverge for those parameters k1 and
penalties. �� that are hatched in Figure 2. The fitness enhancement is

We can now ask how much benefit may be derived considerable for high values of the penalty ��, but negligible
for low values.from making the best possible choice of k0 (Figure 3A).

That is, given k1 and ��, we can ask which optimal
transition rate k0

opt maximizes fitness (Figure 3B) and
compare the fitness attained at this optimal value (Fig- passive bacterium (k0 � 0, k1 � 0, f � 0.5). Of course,
ure 3C, dotted line) to that attained at k0 � 0 (Figure it is because the unfit state will soon become the fit state
3C, solid line). We again see that, for k1 � 1.4, k0 � 0 that such transitions enhance fitness.
is preferred, while for k1 � 1, transitions into the unfit Growth in stochastic environments: In the simplest
state are always beneficial. However, the benefit in the case, we can model environmental transitions as Poisson
latter case becomes more significant at higher penalty processes of rate 1/T, occurring with a constant proba-
values. It is interesting that, in the limit k1 → 0, a bacte- bility per unit time. The time t spent in a given state

will then be exponentially distributed, with mean valuerium that makes transitions purely into the unfit state
(k0 � 0, k1 � 0, f � 0.5) has a fitness advantage over a �t� � T and relative standard deviation 
t � 1. More
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generally, we can assume that each environmental tran-
sition is a process involving ne steps, each occurring at
rate ne/T. We will then have �t� � T, but 
t � 1/√ne, so
transitions will occur with greater regularity. Thus ne � 1
produces a Poisson environment, with 
t � 1, while in
the limit ne → ∞ we recover a purely periodic environ-
ment, with 
t � 0.

For a Poisson environment, the range of parameters
over which k0 � 0 is favored is very small, and the fitness
gain due to such a response strategy is negligible (Figure
2). Our results will therefore be essentially unchanged
if we assume that transitions into the unfit state do not
occur at all. Much more significant and interesting are
effects that arise due to the fact that transitions into the
fit state still occur stochastically: we find that population
fitness actually increases as the environment grows more
irregular (Figure 4A). When we compare fitness in a
Poisson environment to that in a periodic one we find
that, although fitness is always enhanced for the stochas-
tic case, at a certain response rate k1 this enhancement
is greatest (Figure 4B).

DISCUSSION
Figure 4.—Growth in stochastic environments. We used

When faced with a fluctuating environment, a bacte- Monte Carlo simulations to generate stochastic environmental
rial cell that is able to track the environmental state, time courses; given each time course, we used Equation 4 to

determine the time evolution of f1 and time averaged thematching external changes with appropriate internal
result over 20,000 environmental epochs to determine theresponses, would achieve the highest possible growth rate.
fitness f � �f1�. (A) The distribution of times spent by theA brute force solution to this problem would be for the environment in a given state has mean value �t� � T and

cell to have an extremely high response rate, causing it relative standard deviation 
t � 1/√ne. Here we plot the fitness
to switch as soon as any external change was detected. for k0 � 0.0, k1 � 1.0, �� � 1.0, for successive values ne � 1,

2, 4, 8, 16, and 32. Thus we are able to explore environmentsHowever, the same result could be achieved with more
characterized by a range of values of 
t. We see that, at 
t �finesse if the cell were able to anticipate environmental
0, the curve tends to the limit f � 0.56 predicted for a periodicchanges, changing its own state preemptively. Such a environment. Surprisingly, fitness is seen to increase as the

strategy would have the added benefit of minimizing irregularity of the environment, 
t, is increased. (B) Again
the inherent time and energy costs of switching, which setting k0 � 0, we show the fitness enhancement achieved in

a Poisson environment compared to a periodic one, for variouswe have ignored in our model. Evolution would tend to
values of k1 and ��. We see that fitness is always higher in theselect cells that have this capability, cells whose intrinsic
stochastic environment, but this enhancement is greatest atswitching rates somehow corresponded to those of their intermediate values of k1.

natural environments.
For growth in a perfectly periodic environment, it would

seem ideal for a cell to have an internal oscillator that response rates and entrainment properties of a bistable
could be entrained to the external frequency. However, switch are easily adjustable; and the system would be
there would be some drawbacks. First, the biochemical driven by noise rather than hampered by it. Cells would
implementation of a reliable oscillator usually requires achieve greatest fitness by tuning their switching rates
several components, and we must ask if the outcome k0 and k1 appropriately, so that the average frequency
is worth the complexity. Second, such oscillators can of internal transitions matched those of external transi-
typically be entrained over only a certain range of fre- tions.
quencies (Strogatz 1994), which is a problem if the When cells are grown in stochastic environments, they
environmental period is rather variable. Third, the in- are able to achieve a higher net fitness than they were
trinsic noise of biochemical reactions would cause the able to achieve under periodic conditions; moreover,
oscillator to perform less than ideally in any case (Bar- this enhancement is peaked as a function of k1. The
kai and Leibler 2000). In contrast, the cell could per- explanation for this behavior is the following: as the
form nearly as well if it were regulated by the kind environment is made more irregular, the distribution
of stochastic bistable system we have considered here. of times spent in a given environmental state becomes

broad; for a Poisson environment, as mentioned earlier,Bistability occurs generically in a variety of systems; the
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the distribution is exponential. This results in several ample, apparently equivalent bacterial gene regulatory
mechanisms are seen to be more or less robust, de-short-lived environmental epochs, interspersed with a

few in which environmental states persist for longer pending on time variations in external nutrient concen-
trations (Savageau 1998). When such external time varia-times (Figure 1C). Consider a cell that is initially in the

fit state, but suddenly finds itself in the unfit state be- tions are coupled to the dynamics of cell populations,
the results can sometimes be unexpected. This is espe-cause of an environmental change. Since transitions

into the fit state occur stochastically, the cell will tend cially true when stochastic mechanisms in the underly-
ing regulatory networks are considered, since these areto remain in this unfit state for a short period of time,

of average length 1/k1. If the environment returns to often known to influence population dynamics (Pauls-
son 2002). Here we have shown that, during growth inits original state within this time, the cell will once again

be in the fit state, with no effort on its part. It therefore fluctuating environments, cells are able to exploit the
intrinsic stochastic nature of biochemical reactions tobenefits a cell to ignore brief environmental variations,

but to switch only in response to persistent external maximize their own fitness. However, this fitness advan-
tage is obtained over only a limited range of cell re-changes. If the cell response rate is too high, it will tend

to track the environment, switching its state whenever sponse rates and environmental perturbation rates.
These results suggest that time-dependent conditionsthe environment does; if this rate is too low, the cell

will tend to ignore even persistent changes, and its ought to play a central role in the design and interpreta-
tion of laboratory experiments. Thus, experiments thatgrowth will be impaired as a result. The balance between

these false-positive and false-negative responses is seek to understand the behavior of natural networks
should try, as nearly as possible, to mimic the naturalachieved at some optimal response rate k1. Although

fitness is always a monotonically increasing function of time variations to which those networks would be sub-
ject. Conversely, standard experimental protocols suchk1, increases in k1 beyond this optimal value provide

diminishing returns. In principle, a cell could achieve as cell growth in batch culture, which often necessitate
time variations in growth conditions, might be moref � 1 if it were to respond infinitely fast; in practice, it

can get very close to f � 1 simply by setting k1 at or susceptible to side effects of these variations than what
is usually assumed. Studies of external time variationsslightly above the optimal level. When the additional

costs of switching are considered, this argument be- on stochastic biological populations will have several
useful applications, reducing the detrimental effects ofcomes even more compelling: it is very likely optimal

for a cell to tune its response rate to match the rate of external fluctuations on cell cultures, providing more
effective protocols for artificial evolution experiments,natural environmental variations.

We have seen that, during growth in both periodic and even increasing the yield of industrial fermentation
processes.and stochastic environments, heterogeneity can be ben-

eficial; however, the benefit is substantial over only a We thank Han Lim for introducing us to pili phase variation. This
small parameter range, and it is worth understanding work was supported by the Defense Advanced Research Projects

Agency and by National Science Foundation grant PHY-0094181. M.T.why this is the case. A statically heterogenous population
was partly supported by a Graduate Fellowship from the Kavli Institutecopes with an uncertain future by hedging its bets, gen-
for Theoretical Physics.erating a broad distribution of phenotypes in the hope

that some of these will remain viable after an external
change. In contrast, a dynamically heterogenous popu-

LITERATURE CITEDlation has a much more reliable strategy: individuals in
such populations sense and respond to external changes Arkin, A., J. Ross and H. H. McAdams, 1998 Stochastic kinetic

analysis of developmental pathway bifurcation in phage lambda-by actively switching into the fit state. The benefit of a
infected Escherichia coli cells. Genetics 149: 1633–1648.heterogenous response is therefore diminished. Indeed, Barkai, N., and S. Leibler, 2000 Circadian clocks limited by noise.

if the cell response rate is sufficiently rapid compared Nature 403: 267–268.
Bialek, W., 2001 Stability and noise in biochemical switches, pp.to the rate of environmental fluctuations, as is the case

103–109 in Advances in Neural Information Processing Systems 13,in many real systems, then transitions into the unfit state edited by T. K. Leen, T. G. Dietterich and V. Tresp. MIT Press,
are actually detrimental. If heterogeneity is nevertheless Cambridge, MA.

Biggar, S. R., and G. R. Crabtree, 2001 Cell signaling can directobserved in such systems, then it must be due to factors
either binary or graded transcriptional responses. EMBO J. 20:more complex than those we have considered here,
3167–3176.

such as interactions between the different cell popula- Blake, W. J., M. Kaern, C. R. Cantor and J. J. Collins, 2003 Noise
in eukaryotic gene expression. Nature 422: 633–637.tions. We hope that, by placing limits on the circum-

Burger, R., 1999 Evolution of genetic variability and the advantagestances under which heterogeneity can be easily justi-
of sex and recombination in changing environments. Genetics

fied, our results will prompt a deeper investigation into 153: 1055–1069.
Carrier, T. A., and J. D. Keasling, 1999 Investigating autocatalyticthe role of heterogeneity in dynamic cell populations.

gene expression through mechanistic modeling. J. Theor. Biol.The analysis of cellular systems in the context of their
201: 25–36.

natural environments often yields valuable insight into Cohen, D., 1966 Optimizing reproduction in a randomly varying
environment. J. Theor. Biol. 12: 119–129.certain aspects of their structure and function. For ex-

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/167/1/523/6050688 by guest on 20 April 2024



530 M. Thattai and A. van Oudenaarden

Elowitz, M. B., A. J. Levine, E. D. Siggia and P. S. Swain, 2002 Rosenberg, S. M., 2001 Evolving responsively: adaptive mutations.
Nat. Rev. Genet. 2: 504–515.Stochastic gene expression in a single cell. Science 297: 1183–

Savageau, M. A., 1998 Demand theory of gene regulation. II. Quan-1186.
titative application to the lactose and maltose operons of Esche-Ferrell, J. E., Jr., 2002 Self-perpetuating states in signal transduc-
richia coli. Genetics 149: 1677–1691.tion: positive feedback, double-negative feedback and bistability.

Shapiro, J. A., 1998 Thinking about bacterial populations as multi-Curr. Opin. Cell. Biol. 14: 140–148.
cellular organisms. Annu. Rev. Microbiol. 52: 81–104.Hernday, A., M. Krabbe, B. Braaten and D. Low, 2002 Self-perpet-

Siegele, D. A., and J. C. Hu, 1997 Gene expression from plasmidsuating epigenetic pili switches in bacteria. Proc. Natl. Acad. Sci.
containing the araBAD promoter at subsaturating inducer con-USA 99: 16470–16476.
centrations represents mixed populations. Proc. Natl. Acad. Sci.Isaacs, F., J. Hasty, C. Cantor and J. J. Collins, 2003 Prediction
USA 94: 8168–8172.and measurement of an autoregulatory genetic module. Proc.

Smith, H. L., and P. Waltmen, 1995 The Theory of the Chemostat.Natl. Acad. Sci. USA 100: 7714–7719.
Cambridge University Press, Cambridge, UK.Kepler, T. B., and T. C. Elston, 2001 Stochasticity in transcriptional

Strogatz, S. H., 1994 Nonlinear Dynamics and Chaos. Perseus Books,regulation: origins, consequences, and mathematical representa-
Reading, MA.tions. Biophys. J. 81: 3116–3136.

Stumpf, M. P. H., Z. Laidlaw and V. A. A. Jansen, 2002 HerpesLow, D. A., N. J. Weyand and M. J. Mahan, 2001 Roles of DNA
viruses hedge their bets. Proc. Natl. Acad. Sci. USA 99: 15234–adenine methylation in regulating bacterial gene expression and
15237.virulence. Infect. Immun. 69: 7197–7204.

Tanaka, M. M., C. T. Bergstrom and B. R. Levin, 2003 The evolu-Menu, F., J. Roebuck and M. Viala, 2000 Bet-hedging diapause
tion of mutator genes in bacterial populations: the roles of envi-strategies in stochastic environments. Am. Nat. 155: 724–734. ronmental change and timing. Genetics 164: 843–854.Monod, J., 1966 From enzymatic adaptation to allosteric transitions. Thattai, M., and B. Shraiman, 2003 Metabolic switching in the

Science 154: 475–483. sugar phosphotransferase system of Escherichia coli. Biophys. J.
Novick, A., and M. Weiner, 1957 Enzyme induction as an all- 85: 744–754.

or-none phenomenon. Proc. Natl. Acad. Sci. USA 43: 553–566. Wolf, D. M., and A. P. Arkin, 2002 Fifteen minutes of fim: control
Ozbudak, E. M., M. Thattai, I. Kurtser, A. D. Grossman and A. van of type 1 pili expression in E. coli. Omics 6: 91–114.

Oudenaarden, 2002 Regulation of noise in the expression of Wolf, D. M., and A. P. Arkin, 2003 Motifs, modules and games in
a single gene. Nat. Genet. 31: 69–73. bacteria. Curr. Opin. Microbiol. 6: 125–134.

Paulsson, J., 2002 Multileveled selection on plasmid replication.
Genetics 161: 1373–1384. Communicating editor: J. B. Walsh

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/167/1/523/6050688 by guest on 20 April 2024


