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ABSTRACT

The efficiency of marker-assisted selection (MAS) depends on the power of quantitative trait locus
(QTL) detection and unbiased estimation of QTL effects. Two independent samples (N = 344 and 107)
of F, plants were genotyped for 89 RFLP markers. For each sample, testcross (TC) progenies of the
corresponding F; lines with two testers were evaluated in four environments. QTL for grain yield and
other agronomically important traits were mapped in both samples. QTL effects were estimated from the
same data as used for detection and mapping of QTL (calibration) and, based on QTL positions from
calibration, from the second, independent sample (validation). For all traits and both testers we detected
a total of 107 QTL with N = 344, and 39 QTL with N = 107, of which only 20 were in common. Consistency
of QTL effects across testers was in agreement with corresponding genotypic correlations between the
two TC series. Most QTL displayed no significant QTL X environment nor epistatic interactions. Estimates
of the proportion of the phenotypic and genetic variance explained by QTL were considerably reduced
when derived from the independent validation sample as opposed to estimates from the calibration sample.
We conclude that, unless QTL effects are estimated from an independent sample, they can be inflated,

resulting in an overly optimistic assessment of the efficiency of MAS.

OLECULAR marker technologies allow plant ge-
neticists to construct high density genetic maps
for any species of interest and use them for detecting,
mapping, and estimating the effects of quantitative trait
loci (QTL). While the basic idea of this approach was
published more than 70 years ago (Sax 1923), new
interest was generated when studies with maize and
tomatoes successfully demonstrated that some markers
explained a substantial proportion of the phenotypic
variance of complex characters (for review, see Tanks-
ley 1993). As aconsequence, vigorous research on QTL
mapping for quantitative traits such as yield, quality,
maturity, and resistance to biotic and abiotic stress was
initiated in many crop species (for review, see Lee 1995).
Based on first results, it was anticipated that identifica-
tion of important QTL regions could enhance plant
breeding efficiency by marker-assisted selection (MAS).
However, the prospects of this approach depend
strongly upon the expenditures required for QTL map-
ping experiments, because their high costs reduce or
even nullify the advantages of MAS schemes in a com-
prehensive economic assessment.
An important consideration in this context relates to
the sample size (N) needed for QTL mapping. Most
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published experiments with replicated trials have em-
ployed between 100 and 200 progenies (for review, see
Melchinger 1997), this choice being mainly dictated
by the excessive labor and costs required for phenotyp-
ing and genotyping large populations. According to the-
oretical investigations (Lande and Thompson 1990),
the proportion, p, of the additive genetic variance ex-
plained by the detected QTL is inversely related to the
product, h2N, where h? is the heritability of the trait.
Consequently, for traits with moderate or low h? where
MAS should be most efficient, the chances of QTL detec-
tion with the above sample sizes are fairly low unless
the QTL explains a substantial proportion of the genetic
variance. A comparison of QTL detected in large versus
small samples from the same population should give
some insight into the power of QTL detection. So far
the only experimental study that has been published
onsuch a comparison is by Beavis (1994) on the highly
heritable trait plant height using a limited data set of
20 markers only.

In view of the high costs of QTL studies, it has been
common practice to estimate QTL effects from the same
data as used for QTL mapping. With this approach, how-
ever, QTL effects generally are overestimated (Lande and
Thompson 1990). As demonstrated by computer simula-
tions (Beavis 1994; Utz and Melchinger 1994), the
upward bias can be severe for low N and h2 To resolve
this problem, Lande and Thompson (1990) suggested
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obtaining unbiased estimates of QTL effects by mapping
QTL with one data set and based on this information
estimating QTL effects in an independent data set. No
experimental data have been presented so far on this
approach even though knowledge about the magnitude
of the bias of estimated QTL effects may strongly affect
the conclusions concerning the prospects of MAS.

An indication that the bias of estimated QTL effects
can be fairly large stems from the comparison of differ-
ent QTL mapping studies. Beavis (1994) found little
congruency of QTL locations and estimated effects for
QTLon plant height and grain yield in different samples
of progeny from the same cross (B73 X Mo17). However,
as he pointed out, the comparison of results was con-
founded by a number of factors. Different sets of genetic
markers were used in the studies and seed sources of
parental lines were not the same. The progeny were
evaluated in different environments and the level of
inbreeding varied. Another confounding aspect was the
evaluation of lines per se as opposed to testcross (TC)
performance. Most QTL mapping studies have concen-
trated on line per se performance, even though in hybrid
breeding it is essential to test new lines for their TC
performance in combination with unrelated testers. Be-
cause testers and potential hybrid partners of new lines
are often not fixed or may change over time, an impor-
tant question concerns the consistency of QTL for TC
performance with different testers.

In this study, we evaluated TC progenies of 344 F; lines
in combination with two unrelated testers plus additional
TC progenies from an independent but smaller sample
(N = 107) of F; lines from the same cross in combina-
tion with the same two testers for grain yield and four
other important agronomic traits. Objectives of our re-
search were to (i) assess the magnitude of the bias of
estimated QTL effects by mapping QTL with one data
set (calibration) and, based on this information, esti-
mate QTL effects in an independent data set (valida-
tion), (ii) compare the power of QTL detection in sam-
ples of different size, (iii) investigate the consistency of
QTL across testers, and (iv) assess the importance of
epistatic and QTL-by-environment interactions.

MATERIALS AND METHODS

Plant materials: The plant materials used for this study were
partly identical to those employed and described in previous
studies on kernel weight, protein concentration, plant height
(Schon et al. 1994) and forage traits in maize (LUbberstedt
et al. 1997). Briefly, two early maturing elite European flint
inbreds, KW1265 and D146 (subsequently referred to as P1
and P2), were used as parents. Randomly chosen F, plants from
the cross P1 X P2 were selfed to produce 507 independently
derived F; lines. Subsequently, TC seed was produced in two
separate isolation plots by mating each of two inbred testers
as pollinators (KW4115 and KW5361, subsequently referred
to as T1 and T2) to a random sample of 40 F; plants from
each of the 507 F; lines as well as parents P1 and P2. Both

testers were elite inbreds from two diverse European dent
heterotic pools and unrelated by pedigree.

Field experiments: The TC progenies of F; linesand parents
P1and P2 were evaluated in two series of experiments. Experi-
ment 1 comprised two adjacent subexperiments each with 400
entries (Subexperiment 1T1 = TC with tester T1, Subexperi-
ment 1T2 = TC with tester T2) conducted in 1990 and 1991
at two sites in Germany (Gondelsheim and Grucking) with
diverse agroecological conditions and representing two main
maize growing areas in Germany, the Upper Rhine valley
and Lower Bavaria. Data on plant height were additionally
available from forage trials conducted at five environments in
Germany described in detail by Lubberstedt et al. (1997).

Experiment 2 also comprised two subexperiments, each
with 150 entries (Subexperiment 2T1 = TC with tester T1,
Subexperiment 2T2 = TC with tester T2) conducted in four
environments. Two of the trials were grown adjacent to each
other in the same environments (Eckartsweier 1993, Bad Kroz-
ingen 1993) and two environments were only used for one
subexperiment (Subexperiment 2T1: Hochburg 1993, Zell 1993;
Subexperiment 2T2: Eckartsweier 1992, Bad Krozingen 1992).

The 400 entries in Subexperiments 1T1 and 1T2 comprised
380 TC of F; lines, TC of P1 and P2 included as quintuple
entries, and 10 common check hybrids. The 150 entries in
Subexperiments 2T1 and 2T2 comprised TC from a different
set of 127 F; lines, TC of P1 and P2 included as six and seven
entries, respectively, and the same set of 10 check hybrids as
in Experiment 1. The experimental design was a 40-by-10
alpha design (Patterson and Williams 1976) for Experi-
ment 1 and a 15-by-10 alpha design for Experiment 2 with
two replications each. Two-row plots were overplanted and
later thinned to 45 plants per row in 1990, 50 plants per row
in 1991, and 52 plants per row in 1992 and 1993 to reach a
final stand of 10, 11, and 8.7 plants m~2, respectively. All
experiments were machine planted and harvested as grain
trials with a combine.

Data were collected for the following traits: grain yield (GY)
in Mg ha™!, adjusted to 155 g kg~* grain moisture, grain
moisture (GM) in g kg™! at harvest, kernel weight (KW) in
mg kernel ! determined from four samples of 50 kernels from
each plot, protein concentration (PC) in grain (g kg™) mea-
sured by near infrared reflectance spectroscopy as described
by Melchinger etal. (1986), and plant height (PH) measured
in cm on a plot basis as the distance from the soil level to
the lowest tassel branch. In Experiment 1, PC could not be
determined in 1991 at Grucking because of technical problems.

RFLP marker genotyping and linkage map construction:
The procedures for RFLP assays, segregation analysis of indi-
vidual markers, and construction of an RFLP linkage map for
cross P1 X P2 were described in detail by Schon et al. (1994).
A subset of 344 parental F, plants of the 380 F; lines employed
in Experiment 1 and a second subset of 107 parental F, plants
of the 127 F; lines employed in Experiment 2, all chosen for
good DNA yield and showing no evidence of contamination,
were genotyped for a total of 89 RFLP marker loci, 82 of them
showing a codominant and seven a dominant inheritance pat-
tern. Observed genotype frequencies at each marker locus
were checked for deviations from Mendelian segregation ra-
tios and allele frequency 0.5 by ordinary x? tests. Owing to
multiple tests, appropriate type | error rates were determined
by the sequentially rejective Bonferroni procedure (Holm
1979). A linkage map was constructed for the combined set
of 451 F, plants using MAPMAKER version 3.0b (Lander et
al. 1987) and a LOD threshold of 3.0 in two-point analyses.
Recombination frequencies between marker loci were esti-
mated by multi-point analyses and transformed into map dis-
tances (cM) by Haldane’s mapping function.

Data analyses: Each site-year combination was treated as
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an environment in the statistical analyses. First, analyses of
variance were performed on the data from each subexperi-
ment and environment. Adjusted entry means and effective
error mean squares were then used to compute the combined
analyses of variance and covariance across environments for
each subexperiment. The sums of squares for entries (399 d.f.
each in Subexperiments 1T1 and 1T2 and 149 d.f. each in
Subexperiments 2T1 and 2T2) were subdivided into the varia-
tion among TC of F; lines (379 d.f. in Subexperiments 1T1
and 1T2 and 126 d.f. in Subexperiments 2T1 and 2T2) and
orthogonal contrasts among the TC means of P1, P2, F; lines
and the hybrid checks. A corresponding subdivision was con-
ducted on the entry-by-environment interaction sums of squares.
Components of variance for the TC of F; lines in each
subexperiment were computed considering all effects (envi-
ronments, F; lines) in the statistical model as random. Esti-
mates of variance components o? (error variance), o2, (geno-
type-by-environment (G X E) interaction variance), and o}
(genotypic variance) of F; TC progenies and their standard
errors (SE) were calculated as described by Searle (1971, p.
475). Heritabilities (h*) on a TC progeny mean basis were
estimated as described by Hallauer and Miranda (1981)

~ g
2 — 9 _
h 62 0% '
=+ %452

re e

where r = number of replications and e = number of environ-
ments. Exact 90% confidence intervals of h? were calculated
according to Knapp et al. (1985). F-tests were employed for
testing the homogeneity of 63 between (1) the two TC series
in each experiment and (2) the two experiments for each
tester according to the approximation given by Satter-
thwaite (1946). Phenotypic (f,) and genotypic (f,) correla-
tions were calculated between TC of F; lines with T1 and T2
for each trait in Experiments 1 and 2 by standard procedures
(Mode and Robinson 1959).

All QTL analyseswere performed using the linkage informa-
tion given in Figure 1. While Schon et al. (1994) used interval
mapping according to Lander and Botstein (1989) for QTL
analyses, in this study, the method of composite interval map-
ping (CIM) (Jansen and Stam 1994; Zeng 1994) was em-
ployed for mapping of QTL and estimation of their effects
in each of the four subexperiments. All necessary computa-
tions were performed with PLABQTL (Utz and Melchinger
1996), which employs interval mapping by the regression ap-
proach (Haley and Knott 1992) in combination with the
use of selected markers as cofactors. The underlying model
for TC progenies with a given tester can be written as

sz = Wwp1 + o XJ'T + E by Xk + &;. (1)
k

Here, Y, denotes the mean phenotypic trait value of the TC
progeny of line j with tester z (z = 1, 2) averaged across all
environments; wp; is the mean phenotypic trait value of TC
progeny carrying the allele from P1 at the QTL, o is the
average effect of substituting allele q in P1 by allele Q in P2
at the putative QTL in the marker interval (I, | + 1) under
consideration; X; is the conditional expectation of the dummy
variable 6, given the observed genotypes at the flanking marker
loci, where 6, assumes values 0, 0.5 or 1, if the genotype of
the F, plant at the putative QTL is qqg, Qqg, or QQ, respectively;
b is the partial regression coefficient of phenotype Y, on the
kth (selected) marker; xi is adummy variable (cofactor) taking
values 0, 0.5, or 1 depending on whether the marker genotype
of the parental F, individual j at marker locus k is homozygous
P1, heterozygous, or homozygous P2, respectively; g, is a resid-
ual variable for the TC progeny of the jth F; line with tester z.

Cofactors were selected by stepwise regression according to

Miller (1990, p. 49) with an “F-to-enter” and an “F-to-delete”
value of 3.5. Testing for presence of a putative QTL in an
interval by a likelihood ratio (LR) test (yielding so-called LOD
scores) was performed as described by Libberstedt et al.
(1997). We chose a LOD (=0.217 LR) threshold of 2.5 for
declaring a putative QTL. Given that the LR test statistic fol-
lows in our analysis of TC progenies approximately a x? distri-
bution with 2 df (1 df for the a-effect and 1 df for the position
of the QTL; Zeng 1994), this approximates a comparisonwise
type I error P, < 0.0032 or a genomewise type | error P, =
MP, < 0.25 (M = 78 being the total number of intervals
tested). Estimates of QTL positions were obtained at the point
where the LOD score assumed its maximum in the region
under consideration. Under CIM, computation of confidence
intervals for the QTL position is still an unsolved problem
(Visscher etal. 1996). Therefore, QTL detected with different
testers or in different experiments were regarded as common
if their estimated map position was within a 20-cM distance
and the estimated «-effects had identical sign. Presence of
QTL-by-environment (QTL X E) interactions and digenic epi-
static interactions between the detected QTL were tested in
combined analyses of variance across environments by F-tests
described by Bohn et al. (1996). A detailed list of expected
mean squares for the analysis of QTL experiments from multi-
environments is given by Melchinger (1998).

The proportion of the phenotypic variance (%) explained
by a single QTL was determined as the square of the partial
correlation coefficient (N?). Estimates of the allele substitu-
tion () effect of each putative QTL, the total LOD score as
well as the total proportion (R?) of o2 explained were obtained
by fitting a model including all QTL for the respective trait
simultaneously. This model was also used to estimate p, the
proportion of the genotypic variance (o?) explained by all
detected QTL, according to the procedures described by
Bohn et al. (1996).

Two approaches were applied in calculating estimates of
QTL effects: (1) Following common practice, QTL effects
were estimated from exactly the same experiment as used for
QTL detection; (2) QTL detection was performed in one
experiment (subsequently denoted as calibration) and, based
on this information, QTL effects were estimated from the data
of the other experiment with the same tester (subsequently
referred to as validation). In the latter case, the design matrix
X in multiple regression was calculated on the basis of (a)
the map position of the QTL detected in the calibration and
(b) the marker genotype at the flanking markers of the F,
plants in the validation according to described procedures
(Haley and Knott 1992; Utz and Melchinger 1996).

Finally, for each F, genotype j the marker index score M;,
of its TC progeny with tester Tz was calculated from its marker
genotype and the X matrix from the multiple regression in
calibration as outlined by Lande and Thompson (1990). Ac-
cording to standard procedures (Mode and Robinson 1959),
the M, values were subsequently used to estimate the genotypic
correlation r, (Y;;, M;) of the observed TC performance Yj,
with tester Tz' (z' = 1, 2; 2’ # z) and the marker index score
based on results with tester Tz. Standard errors of 7, (Y, M,)
were determined according to Kendall and Stuart (1961,
Equation 27.90), under the assumption that heritabilities of
Y,y are known.

RESULTS

Segregation and linkage of RFLP markers: In the data
analysis of the combined set of 451 F, plants (344 from
Experiment 1 and 107 from Experiment 2), observed
genotype frequencies were consistent with the expected
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Figure 1.—The RFLP map with 89 markers constructed from 451 F, plants of maize cross P1 X P2.

Mendelian segregation ratios for all 89 RFLP markers
assayed (data not shown). The 89 marker loci spanned
amap distance of 1647 cM with an average interval length
of 24 cM (Figure 1). About 90% of the genome was located
within a 20-cM distance to the nearest marker.

Trait means, variances, heritabilities, and correlations:
Climatic conditions were favorable for maize grain pro-
duction in all 10 test environments. Means and pheno-
typic variances of the 10 check varieties included in each
of the four subexperiments varied considerably between
environments for all traits exhibiting rather diverse
growing conditions. Average yield of the 10 checks ranged

from 7.5to0 12.8 Mg ha™*. Phenotypic correlations based
on performance of the 10 check varieties and averaged
over traits and subexperiments were medium when cal-
culated separately for the four environments of Experi-
ment 1 (f, = 0.65) and also for the six environments
of Experiment 2 (f, = 0.79). Using performance of
check varieties in environments of Experiment 1 and
correlating it with their performance in environments
of Experiment 2 resulted in slightly lower phenotypic
correlations (f, = 0.53).

In Experiment 1, TC means of F; progenies with tester
T1 were significantly (P < 0.01) smaller than with tester
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T2 for GY and KW but greater for GM (Table 1). For
Experiment 2, the respective comparison is not mean-
ingful because the two TC series were not evaluated in
the same environments. The TC means of P1 and P2
differed significantly (P < 0.01) for all traits with both
testers in both experiments. Parent P1 generally had
higher TC means than P2 except for GY and GM (tester
T2 in Experiment 2) (Tables 1 and 2). The orthogonal
contrast between the average TC performance of the
parent lines (P) and the TC mean of the F; lines (Fs)
was significant (P < 0.05) only for KW in Experiment 1
and PH in both experiments. The range in TC perfor-
mance of F; lines considerably transgressed the TC means
of the parents for all traits but KW.

Genotypic variances among TC of F; lines (G3) were
highly significant (P < 0.01) for all traits with both
testers in both experiments (Tables 1 and 2). Estimates
of oZ for TC with T1 and T2 were heterogeneous (P <
0.01) only for GM in Experiment 1. Estimates of o7,
were significantly greater than zero (P < 0.01) except
in Experiment 2 for GY and PH (both testers) and GM
(tester T1). Estimates of o2 and o for both testers were
significantly (P < 0.01) greater in Experiment 1 than
Experiment 2 for GY and GM. Heritability was medium
for GY (0.48 < h? < 0.74) but relatively high for the
other traits (0.64 < h? < 0.91) with similar estimates for
both testers and mostly overlapping confidence intervals
for the two experiments (Tables 1 and 2).

Phenotypic correlations between TC of F; lines with
tester T1 and T2 were greater than 0.53 except for GY
(t, < 0.39) yet highly significant (P < 0.01) for all traits
in both experiments (Tables 1 and 2). Genotypic corre-
lations (f,) varied between 0.60 and 0.88 and were in
good agreement between both experiments for all traits.

Identification of QTL: Results from QTL analyses are
presented for means across environments. For Experi-
ments 1 and 2 estimates of the QTL position in the
genome, the level of significance, the size of the pheno-
typic variance explained, the substitution effects and
the significance of QTL-by-environment interactions
are shown in Tables 3 and 4, respectively. The number
of selected cofactors was higher in Experiment 1 (14—
28) than in Experiment 2 (6-14) and more significant
cofactors were found for traits with higher heritability
than e.g., for GY. A complete list of the number of
selected cofactors used for each trait, tester, and experi-
ment can be obtained upon request from the corre-
sponding author.

Comparison of QTL effects between experiments:
Grain yield: For GY, seven putative QTL were identified
in Experiment 1in TC with T1 (Table 3). A simultane-
ous fit accounted for R? = 30.8% of 3 and p = 51.5%
of 62 (Figure 2). Only two QTL were detected in TC
with T2. Collectively, they accounted for R?> = 14.8% and
p = 30.6%. In Experiment 2, one QTL on chromosome
3 explaining 4.1% of 62 and 4.0% of 62 was detected in
TC with T1 (Table 4 and Figure 2). In contrast, four

QTL were found in TC with T2. They explained collec-
tively R?2 = 32.1% and p = 40.6%. In each experiment,
none of the QTL were in common between testers or
displayed significant (P < 0.05) QTL X E interactions.

There was one common QTL for GY between Experi-
ment 1 and 2 (Table 5). For QTL positions identified
in Experiment 1 (calibration), a-effects estimated from
Experiment 2 (validation) were on average about half
as large yet of the same sign as those obtained from
calibration (Table 3). An exception was the QTL on
chromosome 1 with similar a-effects of opposite sign in
calibration and validation. Collectively, the QTL effects
from validation accounted for R? = 12.2% and p =
7.6% for T1 and R? = 3.8% and p = 5.1% for T2. When
calibration was performed with Experiment 2 and valida-
tion with Experiment 1, the estimates dropped to R?* =
0.7% and p = 0.7% for TC with T1 and R? = 11.6%
and p = 22.6% for TC with T2 (Table 4).

Grain moisture: In Experiment 1, 12 and 13 QTL in-
fluencing GM in TC with tester T1 and T2, respectively,
were detected. A simultaneous fit yielded R? = 45.6% and
p = 58.2% for TC with T1 and R?> = 55.1% and p =
61.3% for TC with T2. About half of the detected QTL
displayed significant (P < 0.05) QTL X E interactions.
Seven QTL were in common for both testerswith similar
a-effects.

In Experiment 2, three QTL were found for GM in
TC with T1 (R? = 17.4% and p = 17.6%) and nine in
TC with T2 (R? = 57.9% and p = 63.4%). One of
the QTL was in common between testers, and none
displayed significant QTL X E interactions.

Two and six QTL were in common between Experi-
ment 1 and 2 for tester T1 and T2, respectively (Table
5). Estimates of a-effects from validation in Experiment
2 were in four cases larger but otherwise much smaller
than those from calibration in Experiment 1 (Table 3).
If significant, both estimates of « had identical sign
except for one QTL on chromosome 9 for tester T1
and one on chromosome 2 for T2. Collectively, the QTL
effects from validation in Experiment 2 accounted for
R? = 24.3% and p = 15.5% for TC with T1 and R? =
46.4% and p = 44.8% for TC with T2. Estimates of
a-effects from calibration in Experiment 2 generally
agreed well with those from validation in Experiment
1 (Table 4), where a simultaneous fit explained R? =
6.2% and p = 10.1% for TC with T1 and R* = 31.3%
and p = 34.7% for TC with T2.

Kernel weight: In Experiment 1, 12 QTL in TC with
T1and 11 QTL in TC with T2 were found for KW. The
12 QTL accounted for R? = 63.7% and p = 71.2% for
TCwith T1 and R? = 52.5% and p = 58.9% for TC with
T2. About one quarter of the QTL showed significant
(P < 0.05) QTL X E interactions. Ten QTL were in
common and had similar a-effects for both testers.

In Experiment 2, four QTL were detected for TC with
T1 and five QTL for TC with T2. Collectively, these
QTL explained R? = 41.5% and p = 47.5% for TC with
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Figure 2.—Proportion (p) of 62 explained by the detected
QTL in maize TC progenies of F; lines from cross P1 X P2.
(A) Calibration in Experiment 1 (N = 344), validation in
Experiment 2 (N = 107). (B) Calibration in Experiment 2,
validation in Experiment 1.

T1 and R? = 43.7% and p = 49.6% for TC with T2.
Three QTL were in common between testers and none
showed significant QTL X E interactions.

Three QTL for T1 and two QTL for T2 were in com-
mon between Experiment 1 and 2 (Table 5), including
the largest QTL explaining about 25.5% of & in both

experiments (Tables 3 and 4). Estimates of a-effects
fromvalidation in Experiment 2 were on average almost
as large as those from calibration in Experiment 1 and
agreed in sign except for one QTL on chromosome
2 (Table 3). Collectively, the QTL from validation in
Experiment 2 explained R? = 47.7% and p = 47.3%
for TC with T1 and R? = 39.8% and p = 43.1% for TC
with T2. Likewise, a-effects from calibration in Experi-
ment 2 were mostly in close agreement with those ob-
tained from validation in Experiment 1 (Table 4). Col-
lectively, the QTL from validation in Experiment 1
explained R? = 35.9% and p = 40.2% for TC with T1
and R? = 33.0% and p = 37.1% for TC with T2.

Protein concentration: In Experiment 1, nine and ten
QTL influencing PC in TC with T1 and T2, respectively,
were mapped. A simultaneous fit yielded R? = 37.7%
and p = 48.8% for TC with T1 and R? = 43.0% and
p = 52.3% for TC with T2. Altogether, five QTL showed
significant (P < 0.05) QTL X E interactions. Seven QTL
were in common for both testerswith &-effects of similar
size and same sign.

In Experiment 2, three QTL affected PC in TC with
T1 (R? = 31.6% and p = 46.6%) and four QTL with
T2 (R? = 34.8% and p = 44.4%). Two QTL were in
common between both testers. None of the QTL dis-
played significant QTL X E interactions.

Only one QTL was in common between Experiment
1 and 2 for each tester (Table 5). In several instances,
a-effects from calibration in Experiment 1 differed in
sign (six QTL) or deviated in magnitude from those
estimated from validation in Experiment 2 (Table 3).
In the latter analysis, we obtained R? = 19.5% and p =
18.0% for TC with T1 and R? = 25.7% and p = 27.7%
for TC with T2. Likewise, a-effects from validation in
Experiment 1 were consistently smaller than those ob-
tained from calibration in Experiment 2 and resulted
in reduced estimates of R? = 15.3% and p = 19.5% for
TC with T1 and R? = 9.3% and p = 9.6% for TC with
T2 (Table 4).

Plant height: In Experiment 1, 17 and 14 QTL affecting
PH in TC with T1 and T2, respectively, were identified

TABLE 5

Number of putative QTL detected and in common? (N) for maize TC progenies
of F; lines with testers T, and T, in Experiments 1 and 2

Experiment/tester Grain yield Grain moisture Kernel weight Protein concentration Plant height Sum
1T1 7 12 12 9 17 57
1T2 2 13 11 10 14 50
1T1 N 1T12¢ 0 7 10 7 10 34
2T1 1 3 4 3 4 15
2T2 4 9 5 4 2 24
2T1 N 2T2 0 1 3 2 1 7
1T1 N 2T1 0 2 3 1 3 9
1T2 N 2T2 1 6 2 1 1 11

@ See materials and methods.
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on all 10 chromosomes (Table 3). A simultaneous fit
with all QTL accounted for R? = 63.2% and p = 68.2%
in TC with T1 and R? = 63.6% and p = 73.6% in TC
with T2. Ten QTL were in common with similar a-effects
for both testers. Nine QTL displayed significant (P <
0.05) QTL X E interactions.

In Experiment 2, four QTL were found in TC with
T1. Collectively, these QTL explained R? = 43.6% and
p = 51.9%. Two QTL were found in TC with T2 with
R? = 26.5% and p = 28.7% in a simultaneous fit. The
largest QTL on chromosome 1 explaining more than
23% of 63 was in common between both testers.

Three QTL for TC with T1 and one QTL for TC
with T2 were in common between Experiment 1 and 2,
including the largest QTL found for both testers on
chromosome 1 (Table 5). Estimates of «-effects from
validation in Experiment 2 were largely consistent in
sign and magnitude with those from calibration in Ex-
periment1 (Table 3). Collectively, the former explained
R? = 55.7% and p = 57.6% for TC with T1 and R? =
37.5% and p = 36.6% for TC with T2. Validation in
Experiment 1 based on calibration in Experiment 2
yielded reduced a-effects with R? = 16.1% and p =
16.8% for TC with T1 and R? = 20.8% and p = 22.1%
for TC with T2.

Digenic epistasis between detected QTL: In Experi-
ment 1, the test for digenic epistatic interactions (aa-
effects) among detected QTL was significant (P < 0.05)
in few instances. In TC with T1, we found epistasis only
for GM between the QTL on chromosome 2 (posi-
tion 180 cM) and chromosome 8 (position 106 cM)
with @ = —2.0 g kg~ and the QTL on chromosome
7 (position 2 cM) and chromosome 8 (position 52 cM)
with &a = —1.7 g kg% In TC with T2, epistasis was
indicated for GM between the QTL on chromosome 4
(position 128 cM) and chromosome 8 (position 114
cM) with &a = —3.9 g kg™* and for KW between two
linked QTL on chromosome 2 (position 122 cM and
position 156 cM) with && = —2.30 mg and between the
QTL on chromosome 5 (position 56 cM) and chromo-
some 8 (position 48 cM) with && = 2.35 mg. Including
the aa-effects for these pairs of QTL in the model for
the simultaneous fit increased the R? values only by
2-3% compared to the model without epistasis. None
of the epistatic interactions were confirmed by valida-
tion in Experiment 2 and the R? values for the epistatic
model decreased usually by 1-2% in comparison to the
model without epistasis. In Experiment 2, we found no
significant (P < 0.05) digenic epistasis between any of
the detected QTL.

Correlation between predicted and observed TC per-
formance: In Experiment 1, estimates of the genotypic
correlation ry (Y,, M;) exceeded 0.70 for KW and PH,
and ranged between 0.60 and 0.53 for GM and PC, but
were below 0.39 for GY (Table 6). In Experiment 2, T,
(Yir, M) was below 0.50 in most cases, except for KW
where it ranged from 0.62 to 0.69.

DISCUSSION

Advantages of CIM: A comparison of our results in
Experiment 1 for PC and KW with those of Schon et al.
(1994) clearly demonstrates the advantages of CIM over
simple interval mapping. Both investigations relied on
the same data set and employed the same LOD thresh-
old for QTL detection. For both traits, we found about
twice the number of QTL and a much better agreement
between testers than reported by Schon et al. (1994).
This was due to the detection of additional QTL and a
better resolution of linked QTL with CIM, as expected
from theory and simulation results (Zeng 1994). The
R? values for the simultaneous fit were only marginally
increased with CIM. However, this comparison is con-
founded with the difference in R? estimates obtained
by the regression and maximum likelihood approach
(Xu 1995) implemented in software packages PLABQTL
and MAPMAKER/QTL, respectively, employed in the two
studies.

Estimation of QTL effects from independent samples:
Estimates of individual QTL effects were in most cases
considerably smaller when estimated from an indepen-
dent validation experiment in lieu of the calibration
experiment (Tables 3 and 4). In some cases effects of
opposite sign were found in the validation experiment,
suggesting the occurrence of a type Il error (i.e., a
significant association is correctly declared but the
marker allele is associated with the wrong QTL allele;
Dudley 1993). For all traits and both testers, p from the
simultaneous fit with all detected QTL was considerably
smaller for validation than for calibration (Figure 2).
Averaged over all traits and both testers, p dropped
from 57.5% for calibration in Experiment 1 to 30.3%
for validation in Experiment 2, and from 39.4% for
calibration in Experiment 2 to 21.3% for validation in
Experiment 1. The decrease in p was particularly pro-
nounced for GY, probably due to its complex genetic
architecture.

In our opinion, the decrease in p can mainly be attrib-
uted to two factors: (i) the effect of different samples
and (ii) the effect of different environments. Both fac-
tors are confounded and with currently available statisti-
cal models it is not possible to separate them. However,
the majority of the detected QTL showed no significant
QTL X E interactions, suggesting that different test
environments for the two experiments were not the
major cause for identification of different QTL. Addi-
tionally, the environments used in Experiments 1 and
2 were assumed a random sample of environments avail-
able for testing performance of maize in Germany. This
assumption was corroborated by the similar magnitude
of phenotypic correlations for performance of the 10
check varieties when calculated for environments within
Experiments 1 and 2 as compared to correlations be-
tween environments of Experiments 1 and 2. Further-
more, when practicing MAS, gain from selection will
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TABLE 6

397

Genotypic correlation r, (Y;,, M;,) between observed performance (Y;;) of maize TC progenies of F; lines j with tester
T,, and their prediction (M;) from QTL mapping results of TC progenies with tester T, in Experiments 1 and 2

Tester?
Experiment Yi.r M;, Grain yield Grain moisture Kernel weight Protein concentration Plant height
1 T2 T1 0.38 = 0.07 0.59 = 0.04 0.73 = 0.03 0.53 = 0.05 0.84 * 0.02
T1 T2 0.26 = 0.07 0.59 = 0.05 0.75 = 0.03 0.58 = 0.05 0.73 = 0.03
2 T2 T1 0.29+0.11 0.12 + 0.11 0.62 = 0.08 0.48 = 0.10 0.44 = 0.08
T1 T2 0.29 £0.12 0.35 £ 0.10 0.69 = 0.07 0.57 = 0.10 0.51 =+ 0.09

Standard errors are attached.

 Tester employed for determining Y;; (TC performance) and M;, (marker index score).

usually be assessed in environments (years) different
from those in which calibration was performed.

On the other hand, computer simulations (Beavis
1994; Utz and Melchinger 1994; Georges et al. 1995)
demonstrated that statistical sampling has a strong im-
pact on QTL analyses and that the bias in QTL effects
estimated from calibration can be severe, the most im-
portant factors being the sample size N, the magnitude
of the QTL effect, and h% Utz and Melchinger (1994)
showed that with CIM the N2 value of a QTL explaining
8% of o? for a trait with h? = 0.4 can be overestimated
up to 388% for N = 100 and up to 44% for N = 300.
With experimental data the bias in QTL effects is ex-
pected to be even greater than in computer simula-
tions given the uncertainties in the selection of cofac-
tors and the obscuring effects of missing marker data
and QTL X E interactions.

The inflation in the R? and p values of QTL estimated
directly from calibration can be attributed to several rea-
sons. All are related to the fact that QTL mapping can
be considered as a problem of model selection in multiple
linear regression (Haley and Knott 1992; Whittaker
et al. 1996). Using results of Haley and Knott (1992),
the partial 9? value of a putative QTL in regression
according to Equation 1 can be linked with its LOD
score and the sample size N (see appendix a)

N2 = 1 — pLOD/(02171*N) )

Therefore, a QTL search based on the LOD score crite-
rion is according to Equation 2 equivalent to selecting
for those regressor variables, which account for the
largest proportion (:M2) of the variance in the response
variable (o3) and consequently, faces the same problems
of model selection as does multiple linear regression.
As is well-known from the statistical literature (see e.g.,
Rencher and Pun 1980; Freedman 1983), model selec-
tion leads to an inflation in the M2 values of the selected
explanatory variables, the bias being very severe when
the number of observations is small and close to the
number of predictor variables. Furthermore, the pres-
ence of closely linked markers can introduce multico-
linearity among the regressors with negative impacts

on the quality and stability of the selected model. In
particular, it increases the variance of the estimated re-
gression coefficients and can also strongly affect their
magnitude (Jobson 1991).

Suggestions in the statistical literature (for review, see
Miller 1990) to diminish these problems include (1)
model validation with an additional sample as proposed
by Lande and Thompson (1990) or (2) cross-validation
in the case of larger sample sizes. For validation we
calculated the regressors without model selection based
on QTL positions identified in the calibration and esti-
mated the partial regression coefficients based on the
a priori chosen model. Hence, the estimated regression
coefficients are unbiased in the validation based on
standard linear model theory. Beavis (1994) proposed
the use of resampling strategies for reducing the bias
by using results from experiments with multiple inde-
pendent samples of progeny. Other resampling strate-
gies such as bootstrapping may be a further alternative
for eliminating the bias. However, when using CIM, it
is not obvious from which pool to draw the bootstrap
samples for estimating the QTL parameters (Visscher
et al. 1996).

While the absolute proportion of o2 explained by
QTL in validation differed substantially, depending
upon whether Experiment 1 or 2 was used for calibra-
tion, the relative decrease in p from calibration to val-
idation was largely independent of the sample size
used for calibration. This could be attributable to the
fact that with a larger sample size additional QTL with
smaller effects are detected in calibration. Estimates
of the effects of these QTL are very likely subject to
considerable sampling bias and, therefore, contribute
substantially to the inflation in p values estimated from
calibration even with large sample sizes.

The lack of consistency between QTL effect estimates
obtained from calibration and validation has several
important consequences for QTL mapping and MAS
for polygenic traits: (1) It demonstrates that, due to
sampling and QTL X E interactions, individual QTL
effects estimated directly from calibration can be in-
flated, especially for smaller values of N and complexly
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inherited traits such as GY. Inferences about the relative
magnitude of QTL effects estimated from previous ex-
perimental studies should be reexamined under this
aspect. (2) The distribution of estimated QTL effects
may not reflect the distribution of true QTL effects. A
large estimate may reflect either a large QTL or a small
QTL estimated with a large bias. (3) The decision of
which QTL regions to transfer with MAS and/or to
consider in a selection index should be based on QTL
effects verified in an independent validation sample.
(4) For a correct assessment of the prospects of MAS,
the key parameter p must not be determined from cali-
bration, but from an independent validation sample or
by using cross-validation.

Comparison of QTL detected in samples of different
size: We evaluated the power of QTL detection by com-
paring results from QTL mapping in two independent
samples of different size from the same population. The
smaller sample size (N = 107) in Experiment 2 was
chosen in accordance with (1) most experimental QTL
studies reported in the literature and (2) the maximum
number of progenies generally employed per cross for
early testing in recycling breeding (Beavis et al. 1994).
In Experiment 1 we chose, from a breeder’s point of
view, a large sample size (N = 344) to meet the mini-
mum requirements for the detection of smaller QTL,
as suggested by theory (Lander and Botstein 1989;
Lande and Thompson 1990). From Equation 2 it can
be shown that with a LOD threshold of 2.5 we were able
to detect a QTL accounting for at least 10.2% of o2 in
Experiment 2 (N = 107), but as little as 3.3% of &3 in
Experiment 1 (N = 344). (Smaller values found in Ta-
bles 3 and 4 are due to the fact that these estimates
refer to partial )0’ values from a simultaneous fit of all
detected QTL, which can deviate from the N2 values
calculated in multiple regression according to Equation
1 due to confounding effects of undetected minor QTL
linked in repulsion phase). As a consequence, the total
number of QTL detected for all traits and both testers
in Experiment 1 was almost triple the number detected
in Experiment 2.

Only about half (20) of the putative QTL detected
in Experiment 2 were in common with QTL identified
in Experiment 1 and the poorest agreement was ob-
served for GY (Table 5). As pointed out earlier, the
comparison of results between Experiments 1 and 2 is
confounded by the different test environments and very
likely both factors, sampling and QTL X E interactions,
contributed to the lack of congruency of QTL found for
the two experiments. In a comparison of QTL mapping
results from two independent studies with elite cross
B73 X Mo17, Beavis et al. (1994) found similar results
for GY. These authors concluded that the lack of congru-
ency was mainly attributable to sampling of progeny
because the sample sizes used in their study were small.
However, even with large sample sizes the statistical
power of QTL detection is only moderate for QTL with

smaller effects as demonstrated by various simulation
studies (Van Ooijen 1992; Beavis 1994; Utz and Mel-
chinger 1994). For example, the power for detecting
a QTL explaining 3.5% of o2 in Experiment 1 is only
about 0.5. Consequently, if such a QTL is detected in
one experiment, it has only an even chance of being
identified in an independent set of progeny. This argu-
ment applies to (1) small QTL and large values of N or
(2) large QTL and small values of N, but it does not
suffice to explain why half of the large QTL detected
in Experiment 2 were not recovered in Experiment 1.
This is because with N = 344, h? > 0.5, and LOD >
2.5, the power for detecting a QTL which supposedly
accounts for 10% or more of o}, exceeds 0.90 (H. F.
Utz, unpublished results).

This apparent gap of explanation can be closed by
considering that many of the QTL effects estimated in
Experiment 2 had a large upward bias, as discussed
earlier. Assuming their true effects were often much
smaller, it follows in combination with the previousargu-
ment that there was only a moderate chance of detect-
ing them simultaneously in Experiment 1. In addition,
we cannot rule out that a few of the putative QTL
were either environment-specific or “false positives” and
therefore occurred only in one experiment, given that
a LOD threshold of 2.5 corresponds in our study to a
genomewise Type | error rate P, = 0.25.

For testing congruency of QTL it was not possible
to adopt a criterion based on overlapping confidence
intervals, because with CIM their computation is still an
unsolved problem (Visscher et al. 1996). We declared
two QTL as being in common if they had the same sign
and were within a 20-cM distance. Using a wider interval
length (e.g., 40 cM) would have increased the propor-
tion of common QTL only marginally but entailed a
high risk that well-separated different QTL are declared
as common, if they have by chance the same sign. This
applies particularly for such traits as PH, where a large
number of QTL was detected.

The “genetic architecture” of a trait characterized by
the number of effective factors (Wright 1968) has an
impact on both the power of QTL detection and the
magnitude of the bias when estimating QTL effects.
With a large number of minor QTL influencing a quan-
titative trait, the power of QTL detection and conse-
quently the number of common QTL should be smaller
than for a trait governed by a small number of major
QTL. Likewise, the relative bias in R? and p is expected
to be smaller with a small humber of major QTL ex-
plaining a substantial proportion of ¢ than for a trait
with a large number of minor QTL. A comparison of
our results for GY and the other traits supports this
hypothesis. It was interesting to observe, however, that
the highest number of QTL was found for PH, a trait
with presumably oligogenic inheritance. Before the ad-
vent of molecular markers, estimates on the number of
genes involved in expression of quantitative traits were
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mainly based on Wright’s (1968) formula, which se-
verely underestimates the number of effective factors
involved in trait expression if certain assumptions such
as purely additive gene action and independent segrega-
tion of genes with equal effects are not met. Based on
results from QTL mapping studies, it seems very likely
that even highly heritable traits like PH are regulated
by a large number of genes and that assumptions about
the inheritance of these traits need to be revised. Similar
findings have recently been reported by Cheverud et
al. (1996) for murine growth.

The lack of congruency among QTL detected in two
samples from the same cross provides the baseline for
comparisons of QTL detected in populations derived
from different crosses. Therefore, it was not surprising
that most QTL regions reported here were either
unique or found in just one or two comparable studiesin
the literature. Only one QTL region adjacent to marker
umc89 on chromosome 8 affecting both GY and GM was
identified in several other investigations (Stuber et al.
1992; Beavis et al. 1994; Bohn et al. 1996). Likewise,
the QTL region adjacent to umc140 on chromosome 9
was repeatedly shown to have a large effect on KW
(Beavis et al. 1994; Austin and Lee 1996). Three of
the seven QTL detected for PC in cross IHP X ILP
(Goldman et al. 1993) were also active in Experiments
1 and 2 with both testers.

In addition to the confounding factor of sampling,
two features of our experimental materials could ex-
plain the singular set of QTL reported here: (1) Our
mapping population was generated from a cross of two
elite European flint lines, whereas all other QTL studies
in maize have employed wide crosses between North
American dent lines or tropical germplasm. Because
flint and dent are fairly distinct germplasm groups, we
hypothesize that they have only a small subset of poly-
morphic QTL in common. (2) In practical breeding
programs, elite lines from the same heterotic group are
crossed and early selfing generations (F, plants or F;
lines) are evaluated for their TC performance in combi-
nation with testers from the opposite heterotic group.
We therefore mapped QTL for TC performance as op-
posed to line per se performance commonly determined
in most previous QTL studies. This can result in largely
different sets of QTL as demonstrated in a comparison
of both features in cross B73 X Mol7 (Beavis et al.
1994) and expected from theory (see appendix b).

Comparison among testers: According to theory (see
appendix b), consistent QTL mapping results across
testers are expected in the absence of epistasis if both
testers have identical alleles at the QTL, or additive
gene action prevails, or the dominance effects satisfy
the condition

diry — dorg = dirp — oo (3)

In all these cases, interactions in the two-way table of
TC means with parents representing one factor and

testers the second factor are absent and r, between dif-
ferent TC series is 1.0. Conversely, inconsistent results
can arise when (a) the two testers have different alleles
at the QTL (T1 # T2) and Equation 3 is not satisfied
(i.e., the alleles in P1 and P2 show different dominance
relationships with each tester allele) or (b) the QTL al-
leles of P1 and P2 display different epistatic interactions
with the tester alleles at other loci. Obviously, both cases
also result in lower estimates for r,.

With the exception of GY, our QTL mapping results
in Experiment 1 agreed well across testers for all traits:
more than half of the QTL detected with one tester
were also found with the other tester and the proportion
of common QTL was in close agreement with the mag-
nitude of f,. This is consistent with the preponderance
of additive gene action found for these traits in clas-
sic quantitative-genetic experiments (Hallauer and
Miranda 1981, Chapter 5) and recent QTL mapping
studies for per se performance in maize (Beavis et al.
1994; Berke and Rocheford 1995; Bohn et al. 1996).

The absence of common QTL between both testers
observed for GY can be explained by several causes, the
most important being related to gene action. Studies
on GY exhibited a high degree of dominance (Hal-
lauer and Miranda 1981, Chapter 5) and a large pro-
portion of QTL with dominance and overdominance
(or pseudooverdominance) (Stuber et al. 1992; Beavis
et al. 1994; Bohn et al. 1996; Cockerham and Zeng
1996). Under this supposition, inconsistent QTL results
among testers can be explained by masking effects of
the tester allele. If a QTL is detected for tester T1, but
tester T2 carries an allele fully dominant over the alleles
carried by P1 and P2, no QTL will be detected in its
TC progenies. Epistasis between unlinked QTL and
QTL X E interactions were presumably not important
causes for the inconsistencies between testers, as they
were generally of minor importance.

Given that the tester may change over time ina hybrid
breeding program, we examined whether a marker in-
dex score Mj;, based on QTL mapping results with tester
T, would be effective for improving TC performance
Y,y with tester Tz'. For this purpose, we estimated the
genotypic correlation ry (Y, M;;), which represents the
key parameter in the formula for the selection response
in Y; from indirect selection for M; (Falconer and
Mackay 1996). Our results showed for all traits except
GY high enough estimates of r, so that for a given sample,
QTL-marker associations determined for one tester
would be effective for improving TC performance with
other testers. For GY, however, separate QTL mapping
experiments would be required for each tester. In Ex-
periment 2, 7, (Y7, M;,) was relatively small in most cases.
In combination with the low proportion of o} explained
by the detected QTL in this experiment, these results
corroborate that for complex polygenic traits a sample
size N = 100 is not sufficient to obtain reliable QTL
estimates for MAS.
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Epistasis among QTL: The comparison of TC genera-
tion means for parents (P) and F; lines (F3;) provides a
test for the net effect of epistasis across the entire ge-
nome (Melchinger 1987). In agreement with compa-
rable studies in maize (Melchinger etal. 1988; Lamkey
et al. 1995), contrasts between TC generation means
were nonsignificant for most traits, leaving two possible
explanations open: (1) absence of epistasis or (2) can-
celing of positive and negative epistatic effects among
QTL in the sum. Our results from QTL analyses sup-
ported the first hypothesis because no significant di-
genic epistatic interactions were found among QTL de-
tected for each trait, particularly when reassessed by
validation. Stuber et al. (1992) also obtained no evi-
dence for epistasis among pairs of detected QTL in their
analyses of cross B73 X Mol7. However, a reanalysis of
their data by Cockerham and Zeng (1996) based on
single marker analyses gave evidence for substantial epi-
static effects between linked QTL.

One reason for the absence of significant epistasis in
our study could be that we investigated a genetically
narrow cross between elite lines from the same germ-
plasm group. In this case, there should be less opportu-
nity to disrupt coadapted epistatic gene complexes in
the parents as might be expected for wide or interspe-
cific crosses oftentimes employed in QTL mapping stud-
ies. Furthermore, the power for detecting epistatic inter-
actions among QTL is lower for TC performance than
line per se performance due to masking effects of the
tester (Gallais and Rives 1993).

In our analysis, those QTL with significant epistatic
but insignificant main effects would remain undetected.
A recent QTL study on grain yield components in rice
identified a large number of QTL regions of this type
(Li et al. 1997). However, the genome-wide search for
epistatic effects among QTL employed by these authors
is expected to aggravate the problems associated with
model selection discussed earlier, because the number
of regressor variables and multicolinearity among them
increase tremendously. Thus, the need for validation
with an independent sample is even more compelling
for epistatic than for main effects of QTL.

QTL X environment interactions: In Experiment 1,
about one third of the detected QTL displayed signifi-
cant QTL X E interactions. The smallest fraction (one
out of nine) was observed for GY, although estimates
of o for this trait were highly significant and of the
same magnitude as 63 (Table 1). For the other traits,
the proportion of QTL with significant QTL X E interac-
tions was approximately proportional to the ratio
G%,:62 and by far greatest for GM. Interestingly, reduc-
ing the number of test environments for PH in Experi-
ment 1, from nine to four neither altered the number
of detected QTL nor reduced the number of significant
QTL X E interactions (data not shown). In Experiment
2, the ratio 6%:6¢ was generally smaller than in Experi-

ment 1, which was reflected in fewer QTL showing sig-
nificant QTL X E interactions.

Most QTL studies reported in the literature (e.g.,
Stuber et al. 1992; Ragot et al. 1995; Cockerham and
Zeng 1996), including ours, found rarely significant
QTL X E interactions despite the presence of significant
G X E interactions at the phenotypic level. The reasons
for this apparent discrepancy are not clear but two possi-
ble explanationsinclude: (1) the detected (major) QTL
display smaller QTL X E interactions than the smaller
undetected (minor) QTL (Tanksley 1993), and (2)
the test procedure for detection of QTL X E interactions
is less powerful than that for detection of G X E interac-
tions. Our results did not support the first hypothesis
because, among the QTL detected in Experiment 1,
presence or absence of QTL X E interactions was not
associated with the magnitude of a-effects. However,
the second hypothesis cannot be ruled out with the
statistical analysis followed here because our search for
QTL started with an analysis of means across environ-
ments, which favors the detection of QTL with large
main effects over those with small main effects and large
QTL X E interactions. Only after all putative QTL had
been mapped, we applied a combined analysis across
environments for testing the presence of QTL X E inter-
actions. In contrast, the new method of multi-trait analy-
sis devised by Jiang and Zeng (1995) starts QTL search
with a likelihood ratio test for the presence of QTL
activity in at least one environment and subsequently
tests for the presence of QTL X E interactions. It was
not adopted in the present study because it assumes
that environments are fixed, and therefore limits the
scope of inference to the array of environments used
in each experiment.

In general, varying the statistical analysis for CIM had
only little impact on our findings. A comparison of our
method used for QTL and QTL X E analysis with that
of Jiang and Zeng (1995) applied to GY, GM and PH
showed that a larger number of QTL X E interactions
were detected with the latter approach, but results from
both types of analyses hardly differed with respect to
agreement of results between the two experiments. Like-
wise, only marginal deviations from original results were
found when varying the strategy or threshold for cofac-
tor selection in the QTL analysis. We infer from these
findings that the particular choice of statistical analysis
used for CIM has only little influence on the congruency
between calibration and validation.

Conclusions: Identification of QTL affecting TC per-
formance of agronomically important traits and accu-
rate estimation of their genetic effects, including epista-
sisand QTL X E interactions, are essential requirements
for application of MAS in hybrid breeding of maize.
Here, we used independent samples of TC progenies
from the same population to (1) assess the magnitude
of the bias of estimated QTL effects and (2) compare
the power of QTL detection in samples of different size.
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Our results suggest that inferences drawn from QTL
mapping studies about the efficiency of MAS should
be verified in an independent validation sample. When
QTL effects are estimated from the same data as used
for detection and mapping of QTL positions, they can
be inflated due to statistical samplingand G X E interac-
tions. The relative magnitude of the bias can be substan-
tial for sample sizes typically used in QTL mapping
experiments (N < 200) especially for traits with moder-
ate heritability and a complex genetic architecture such
as grain yield. As a consequence, the key factor de-
termining the efficiency of MAS in comparison with
classical phenotypic selection, the proportion, p, of the
genotypic variance explained by QTL-marker associa-
tions, is overestimated. Moreover, if in this study the
magnitude of estimated QTL effects had been used as
a criterion for the choice of important QTL regions to
be transferred by MAS or to be considered in a selection
index, selection response would have been smaller than
expected, because QTL effects estimated from calibra-
tion were biased.

With currently available statistical methods it was not
possible to separate the effects of statistical sampling
and QTL X E interactions in this study, but we believe
that at least the bias owing to sampling effects can be
reduced by validation or cross-validation. For a correct
assessment of the prospects of MAS as compared to
classical phenotypic selection, more research efforts
need to be dedicated to the analysis of the different
factors leading to the inflation of QTL effect estimates.

The moderate agreement among the QTL detected
in each sample provides evidence for a low power of
QTL detection for most traits, especially GY. Only a
small fraction of the detected QTL showed significant
QTL X E interactions for all traits except GM, sug-
gesting that field testing of experimental materials could
be limited to few environments known to provide good
differentiation.

The consistency of QTL mapping results across testers
largely reflected the genotypic correlations among test-
ers and the predominant type of gene action for each
trait. Thus, for a given sample, selection response from
MAS for TC performance of traits with mainly additive
gene action should be comparable for TC progenies
with the tester used in QTL mapping and TC progenies
with other unrelated testers. For all traits, we found little
evidence for digenic epistasis among the detected QTL,
particularly when reexamined in an independent sam-
ple. On the contrary, differences in the TC performance
of F; lines with each tester were due to the presence
or absence of common QTL. This suggests that non-
epistatic gene effects are major determinants of general
and specific combining ability in hybrid performance, as
was also concluded from numerous classic quantitative-
genetic experiments (Hallauer and Miranda 1981,
Chapter 8).
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APPENDIX A: RELATIONSHIP BETWEEN
R2, %2, AND THE LOD SCORE

According to Haley and Knott (1992, p. 317) and
Searle (1971, p. 125), the likelihood ratio test (LR)
for presence of a putative QTL in composite interval
mapping (Zeng 1994) can be written in terms of the
residual sum of squares of the full model (fitting the
cofactors plus the a-effect of the putative QTL in Equa-
tion 1) and the reduced model (fitting only the cofac-
tors), and the number of observations (SSE , SSEg, and
N, respectively)

LR = Nn (SSER).

SSE (AD)

This can be expressed in terms of the coefficient of
multiple correlation for the full model (R?) and reduced
model (R3)

_ 2 2
LR=NIn<1RR)=—NIn(1 R

A A2
1 - R? l—R%) (A2)

Let 312 denote the square of the partial correlation coef-
ficient between y and x/(the Ith QTL) controlling for

the cofactors (xy, X, . . ., Xi), then we have according to
Rao (1973, p. 268)
R? — R} 1 - R?
N=——"7"=1-"—, A3
1 - R; 1 - R; (A3)

Inserting Equation A3 into Equation A2, we obtain

LOD = — X R = 021715 N In (1 — %) (Ad)
2In 10

or
R2 = 1 — pLOD/(021715 % N) (A5)

For simple interval mapping (no cofactors x, in Equation
1, i.e., k = 0), Equation A4 coincides with the following
result given by Lynch and Walsh (1997):

LOD = —0.21715 N In (1 — R?), (A6)

from which we obtain
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R2 = ] — g LOD/(021715 xN)_ (A7)

APPENDIX B: AVERAGE EFFECT OF ALLELE
SUBSTITUTION IN TESTCROSSES

For a given QTL and tester Tz, the average effect of
substituting the allele from parent P1 by the allele from
parent P2 can be expressed as (Melchinger 1988)

ap = a+ G, — iy (B1)

Here, a is the additive effect of alleles A; and A, in

parents P1 and P2, respectively, i.e., a = (A, A, — A,
A)/2, and di, = Al A, — (Ai A + A, AR)/2 is the
dominance effect between allele A; from parent P; (i =
1, 2) and allele Ay, from tester Tz. Hence, we have

ar; = ap, if and only if
Oory — iy = oz — dira. (BZ)
Furthermore, for the comparison of QTL effects deter-

mined from evaluation of TC performance with tester
Tz and line per se performance, we have

if and only if dii = doi. (B3)

or;, = a
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