Abstract

The asymmetry phenotype of diazinon-resistant flies lacking a fitness/asymmetry Modfier (+/+; R/−) was dominant and independent of developmental temperature, larval density and diazinon concentration. Asymmetry score, pooled over three bristle characters, was ~50% greater for these phenotypes than for those of modified genotypes (M/−; −/− ) and unmodified susceptibles (+ /+ ; S/S) reared under standard laboratory conditions. Modified and susceptible phenotypes showed increased asymmetry score for temperatures and larval densities above and below standard rearing conditions; a positive correlation was observed between diazinon concentration and asymmetry score. Single and multiple environmental stresses resulted in similar scores that approached, but never exceeded, those of unmodified resistant phenotypes. Irrespective of the developmental conditions anti-symmetry and fluctuating asymmetry were typically observed for each bristle character of unmodified resistant and the modified and susceptible phenotypes, respectively. Thus while similar asymmetry scores could arise from genetic or environmental effects, asymmetry pattern was genetically based. Population cage analyses at different temperatures and larval densities showed a negative association between mean asymmetry and relative fitness.

Communicating editor: A. A. Hoffmann

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)