Mutation-selection balance and metabolic control theory.
A G Clark

Abstract

The evolution of metabolic control is examined with models that unify approaches of classical quantitative genetics and metabolic control theory. The quantitative traits considered are the activities of enzymes embedded within metabolic pathways. In the models, polygenic mutation alters the enzyme activities (Vmax/Km) according to prescribed distributions, and the population evolves following classical haploid viability selection. Stabilizing selection operates on global properties of the metabolic pathway, including either flux or metabolite pool concentration. Analytical results and numerical simulations demonstrate several important properties of these characters, including skewed, non-Gaussian equilibrium distributions, and an expected positive correlation between activities of enzymes flanking a substrate pool undergoing stabilizing selection. The house-of-cards approximation proved to be accurate in predicting the equilibrium distribution of allelic effects for a biologically reasonable segment of the parameter space. Further experimental and theoretical work is needed before a clear assessment can be made whether the observed variance in enzyme activities is explicable by a mutation-selection balance, and this system provides an excellent opportunity for such a test.