The homeotic gene Sex combs reduced of Drosophila melanogaster is differentially regulated in the embryonic and imaginal stages of development.
A M Pattatucci, T C Kaufman

Abstract

The Sex combs reduced (Scr) locus is unique among the genes contained within the Antennapedia complex (ANT-C) of Drosophila melanogaster in that it directs functions that are required for both cephalic and thoracic development in the embryo and the adult. Antibodies raised against protein encoded by Scr were used to follow the distribution of this gene product in embryos and imaginal discs of third instar larvae. Analysis of Scr protein accumulation in embryos hemizygous for breakpoint lesions mapping throughout the locus has allowed us to determine that sequences required for establishment of the Scr embryonic pattern are contained within a region of DNA that overlaps with the identified upstream regulatory region of the segmentation gene fushi tarazu (ftz). Gain-of-function mutations in Scr result in the presence of ectopic sex comb teeth on the first tarsal segment of mesothoracic and metathoracic legs of adult males. Heterozygous combinations of gain-of-function alleles with a wild-type Scr gene exhibit no evidence of ectopic protein localization in the second and third thoracic segments of embryos. However, mesothoracic and metathoracic leg imaginal discs can be shown to accumulate ectopically expressed Scr protein, implying a differential regulation of the Scr gene during these two periods of development. Additionally, we have found that the spatial pattern of Scr gene expression in imaginal tissues involved in the development of the adult thorax is governed in part by synapsis of homologous chromosomes in this region of the ANT-C. However, those imaginal discs that arise anteriorly to the prothorax do not appear to be sensitive to this form of gene regulation. Finally, we have demonstrated that the extent of Scr expression is influenced by mutations at the Polycomb (Pc) locus but not by mutant alleles of the zeste (z) gene. Taken together, our data suggests that Scr gene expression is differentially regulated both temporally and spatially in a manner that is sensitive to the structure of the locus.