Selection for Tn10 Tet Repressor Binding to tet Operator in Escherichia coli: Isolation of Temperature-Sensitive Mutants and Combinatorial Mutagenesis in the DNA Binding Motif A. Wissmann, L. V. Wray, Jr., U. Somaggio, R. Baumeister, M. Geissendörfer and W. Hillen Lehrstuhl für Mikrobiologie, Friedrich Alexander Universität Erlangen/Nürnberg, D-8520 Erlangen, Federal Republic of Germany Manuscript received July 13, 1990 Accepted for publication February 8, 1991 #### ABSTRACT We have constructed a genetic assay which selects positively for a functional interaction between Tet repressor and its cognate operator in Escherichia coli. In this strain Tet repressor blocks expression of lacl and lacZ. This leads to derepression of a lacPO controlled galK gene. The strain can be selected by growth on galactose as the sole carbon source and screened for the β -galactosidase phenotype. These features allow the identification of one candidate among 10^8 false clones on a single plate. The assay was applied to select mutants with a ts DNA binding phenotype and to screen oligonucleotide generated Tet repressor mutants. Analysis of these mutations revealed that they affect DNA and inducer binding and possibly the dimerization domains. These mutations are located at residues 21, 48, 49, 89 and at the C terminus of the protein (193), respectively. THE tet determinant on transposon Tn10 confers high level resistance to tetracycline in Escherichia coli and other enteric bacteria (FOSTER, HOWE and RICHMOND 1975; KLECKNER et al. 1975). Expression of resistance is regulated very tightly at the level of transcription (BECK et al. 1982). The regulatory region contains the tet promoters as well as two tet operators O₁ and O₂ (BERTRAND et al. 1983) which are bound by Tet repressor preventing transcription (HILLEN et al. 1983; WRAY and REZNIKOFF 1983; MEIER, WRAY and HILLEN 1988). The inducer tetracycline binds to Tet repressor leading to the loss of DNA binding activity. A special feature of this system is the opposite orientation of the tetR gene encoding Tet repressor relative to the resistance gene. tetR is transcribed by promoters within the tet regulatory region and is subject to autoregulation (BERTRAND et al. 1983; HILLEN, SCHOLLMEIER and GATZ 1984). These features are summarized in Figure 1. Three essential Tet repressor functions are depicted in the figure: dimerization to form the active DNA binding form, DNA recognition and induction by tetracycline. *tet* operator binding probably makes use of an α -helix-turn- α -helix supersecondary structure (ISACKSON and BERTRAND 1985) and several mutants lacking inducibility by tetracycline have been mapped between amino acids 64 and 107 of the 207 amino acid primary structure (POSTLE, NGUYEN and BERTRAND 1984; SMITH and BERTRAND 1988). We are interested in studying the functional basis of Tet repressor activities and describe in this article the construction, efficiency and application of an *E. coli* strain that allows positive selection for functional Tet repressor-tet operator binding. Similar approaches have been used to analyze other protein-DNA recognition reactions (for example see ELLEDGE et al. 1989). #### MATERIALS AND METHODS Bacteria and phage: All bacterial strains are derived from E. coli K12. Strain R1291 (pro galK2 rpsL srl::Tn10) is a derivative of E. coli N99 and was obtained from B. RAK, Freiburg, Federal Republic of Germany. This strain was transduced to a $pro^+\Delta lacX74$ genotype using a P1 lysate grown on E. coli X7029 (BECKWITH and SIGNER 1966). The resulting E. coli strain WH205 was then transduced to srl+ by a phage T4GT7 lysate (WILSON et al. 1979) derived from E. coli N100 (McKenney et al. 1981). This yielded strains with a srl+ Tc' phenotype. Since recA can be cotransduced with srl by T4GT7, candidates were analyzed for hypersensitivity to UV. Isogenic strains WH206 (galK2 \(\hat{\Delta}lacX74 \) rpsL) and WH207 (as WH206 but recA) were obtained which differ phenotypically only in their UV sensitivity. E. coli JM101 was used for propagation of M13mp9 phages and derivatives thereof (YANISCH-PERRON, VIEIRA and MESSING 1985). Phages λplac5 (IPPEN, SHAPIRO and BECK-WITH 1971) and derivatives were propagated in E. coli XA103 (MILLER et al. 1977). E. coli NK5031(\(\lambda\)tet50) was obtained from L. SMITH, San Diego. The lysogenic phage λtet50 is identical to λRStet158-50 (SMITH and BERTRAND 1988; L. D. SMITH, personal communication) and carries the wild-type cI allele as well as a tetA-lacZ fusion. Strain KD1067 (Degnen and Cox 1974) was used as a mutator strain for plasmid DNA. Plasmids were constructed and transformed to E. coli strains RRIAZM15 (RÜTHER 1982) or X7029 (BECKWITH and SIGNER 1966). ¹ Present address: BASF Bioresearch Cooperation, 195 Albany Street, Cambridge Massachusetts. ² Present address: Department of Microbiology, Boston University, 80 Fast Concord Street, Boston Massachusetts 02118–2394. ⁸ Present address: Chemotherapeutisches Forschungsinstitut Georg Speyer Haus, Paul Ehrlich Strasse 42–44, 6000 Frankfurt/M.70, Federal Republic of Germany. 226 A. Wissmann et al. FIGURE 1.--Regulation of gene expression of the transposon Tn10encoded tetracycline-resistance determinant. Both genes tetA (encoding the resistance protein) and tetR (encoding the Tet repressor) are indicated. Their divergent expression is symbolized by wavy lines corresponding to the respective mRNAs. The central tet regulatory region consists of several promoters (not shown) and the two tet operators O1 and O2 represented by hatched boxes. Tetracycline is indicated by the small rectangle which binds to and induces Tet repressor. The Figure was adapted from WISSMANN and HILLEN (1989). DNA sequence analyses: Single-stranded M13 DNA and double-stranded plasmid DNA were sequenced according to the method of SANGER, NICKLEN and COULSON (1977) and HATTORI and SAKAKI (1986). **Determination of \beta-galactosidase activities:** Assays were done exactly as described by MILLER (1972), except that cultures were grown in LB supplemented with the appropriate antibiotics. For induction studies overnight cultures were grown in the presence of 0.1 μ g/ml tetracycline, whereas 0.2 μ g/ml were added to log cultures. All measurements were repeated at least twice. Media, enzymes and chemicals: Media and general phage techniques have been described (MILLER 1972; MANIATIS, FRITSCH and SAMBROOK 1982). Antibiotics and onitrophenyl- β -D-galactoside were obtained from Sigma, St. Louis. Restriction endonucleases, *E. coli* DNA polymerase I large fragment, T7 polymerase, calf intestine alkaline phosphatase and T4 DNA ligase were purchased either from New England Biolabs (Schwalbach), Pharmacia (Freiburg), Boehringer (Mannheim) or BRL (Dreieich). ATP, deoxyribonucleoside triphosphates and dideoxyribonucleoside triphosphates were obtained from Boehringer (Mannheim). [α - 32 P]dATP (400 Ci/mmol) was purchased from Amersham (Braunschweig). Oligonucleotides were synthesized using an Applied Biosystems automated DNA synthesizer model 381A. Molecular techniques: Mutagenesis of Tet repressor positions 46 to 49 was accomplished by mutually primed synthesis of degenerate oligonucleotides as detailed by HILL (1989). The sequence of the oligonucleotide was 5' GCCAGCATGTAAAAAATAAGCGGGCCCTGCTCGACGCGTCGAGC 3'. Bold letters (bases shown are wild type) indicate that 6-7% each of the three non-wild-type bases were added at these positions during synthesis of the oligonucleotide. **Plasmids:** Plasmid pWH410 contains a fusion of the *tet* regulatory region to the *lac* operon (*tetA-lacZ* fusion). It was derived from pMC1403 (CASADABAN, CHOU and COHEN 1980) and allows Δ lac *E. coli* strains to grow on lactose as the sole carbon source. Plasmid pWH414 differs in two aspects from pWH410. First, it carries a *tetR-lacI* fusion (Figure 2). Second, it contains a one base pair frameshift mutation at the fusion of *tetA* and *lacZ*. This renders Δ lac *E. coli* strains unable to grow on lactose. Nevertheless, phenotypical detection of β-galactosidase activity with X-Gal is still possible. Transdominance was analyzed in strains containing pWH853. This plasmid is a pBR322 derivative in which the tet regulatory region was deleted yielding pWH806 and the promoterless Tn10 tetR gene was inserted resulting in low level constitutive expression (MÜLLER-HILL, CRAPO and GILBERT 1968). Plasmid pWH1411 was used for the cassette mutagenesis and as a derivative of pACYC177 (CHANG and COHEN 1978) is compatible to plasmids derived from pBR322. It confers resistance to chloramphenicol and contains a constitutively expressed *tetR* gene. To allow cloning of short oligonucleotide cassettes between singular restriction sites, the sequence of the *tetR* gene was altered without changing the encoded protein sequence. pRT240 is similar to pWH1411, except that it confers resistance to kanamycin and contains a wild-type *tetR* gene (BERTRAND *et al.* 1984; MEIER, WRAY and HILLEN 1988). The pACYC177 derivatives pWH1200 and pWH1201 (ALTSCHMIED et al. 1988), pUC19 (YANISCH-PERRON, VIEIRA and MESSING 1985), pWH483 (MEIER, WRAY and HILLEN 1988) and pMc5-8 (STANSSENS et al. 1989) have been described. Plasmid pWH1012 (SIZEMORE et al. 1990) with divergent tetR-galK and tetA-lacZ transcriptional fusions was used for quantitative analyses of Tet repressor binding to tet operator in vivo. Phage constructions and crosses: pWH483 was digested with NdeI and SmaI yielding a 1950-bp fragment with the entire galK gene. In addition, this fragment contains a segment of 180 bp with translational stops in all three reading frames 5' of the gene and a λt° terminator following the 3'-end of galk. After filling in the protruding ends the fragment was cloned into HincII linearized M13mp9. A candidate with lac dependent transcription of galK was named mWH22. A second lac operator with the proposed ideal binding sequence for Lac repressor (SADLER, SASMOR and BETZ 1983) was cloned 19 bp upstream of the start codon for galK into the single NruI site of mWH22 yielding mWH25. In this construction palindromic centers of the two lac operators are separated by 233 bp. The galK construct from mWH25 was recombined into the lac sequences present on λ plac5 to yield λ WH25 (Yu and Reznikoff 1984). Since this phage carries the cI^{857} allele from λ plac5, E. coli strains lysogenized with this phage were grown at temperatures below 33° The construction of phage λtet50 has been described (SMITH and BERTRAND 1988). E. coli NK5031(λtet50) was treated with mitomycin C and the resulting phage lysate used to lysogenize E. coli WH207. Selection of temperature-sensitive Tet repressor mutants: Mutagenized pRT240 was transformed to E. coli WH207 containing pWH410 and grown to saturation at 42° in minimal medium with lactose. Since pWH410 contains a fusion of the tet regulatory region to the lac operon this step represents a selection against binding of Tet repressor to tet operator. Afterward pRT240 derivatives were isolated and retransformed to WH207(\(\lambda\)WH25) containing pWH414. Transformants were grown to saturation at 28 in minimal medium with galactose. Here, cells containing tet operator bound by Tet repressor are selected. The pRT240 derivatives were isolated and retransformed to WH207 with pWH410. Again cells were grown to saturation at 42° in minimal medium using lactose. The pRT240 derivatives were isolated, transformed to WH207 with pWH410 and plated on glucose minimal medium supplemented with ampicillin, kanamycin and X-Gal. Plates were incubated at 42° for 2 days and blue colonies transferred to fresh plates containing the identical medium. lacZ phenotypes were scored after incubation at 28° for 2 days. tetR genes were recloned as HincII fragments in pUC19. From derivatives with lac promoter tet fusions, EcoRI/SphI DNA fragments containing tetR were then inserted into the respective sites of pWH1200 and pWH1201. This yielded two sets of plasmids with pWH1200 derivatives directing a "high," and pWH1201 derivatives directing a "low" level constitutive expression of tetR in vivo (BERTRAND et al. 1984). # RESULTS # Selection of Tet repressor binding to tet operator: The selection makes use of the *tet* directed expression of divergently arranged *lacZ* and *lacI* genes. Binding of repressor to the *tet* operators turns off transcription of both genes resulting in *lacZ⁻E. coli* colonies. At the same time, the absence of Lac repressor allows expression of a galactokinase gene driven by the the *lac* regulatory region. This enables the *E. coli* strain to use galactose as the sole carbon source. In the absence of Tet repressor binding to *tet* operators, *lacZ* as well as *lacI* are expressed. Lac repressor binds to the *lac* operators and prevents transcription of *galK*. The cell cannot utilize galactose as the sole carbon source for growth and displays a *lacZ⁻* phenotype. The selection system consists of two plasmids and a λ prophage and is depicted in Figure 2. pWH414 makes use of the divergent tet regulatory region in that both a tetR-lacI transcriptional fusion as well as a tetA-lacZ fusion are present on the same plasmid. Tet repressor is supplied in trans by a second compatible plasmid (pRT240). The third component of the system is the prophage λ WH25 which provides a single copy lacPO-galK fusion. The host strain is E. coli WH207 and has a gal operon with the galK2 mutation (see MATERIALS AND METHODS). A qualitative analysis of this system shows that all components behave as anticipated (see Table 1, lines 1 and 2). In the presence of Tet repressor, the strain is gal^+ and $lacZ^-$ (line 2, galactose alone). In the absence of Tet repressor, the strain is gal^- (line 1, galactose \pm tetracycline; line 2, galactose + tetracycline). In the absence of Tet repressor, lacI repression FIGURE 2.—Selection of Tet repressor binding to tet operator. DNA is indicated by thin lines, relevant genes as open boxes, the λt° terminators as stippled boxes, the lac operators as hatched boxes, the tet operators as filled boxes and the lac promoter on λ WH25 as an open arrow. Filled circles mark the origins of replication of both plasmids. The arrow expanding through the tetR gene in pRT240 indicates the transcript originating from the bla promoter, whereas the other arrow defines the kanamycin resistance gene. The arrow in pWH414 indicates the bla gene. Tet repressor is shown as a dimer and Lac repressor as a tetramer. TABLE 1 Tet repressor and Lac repressor dependent expression of galactokinase in E. coli WH207(\(\lambda\)WH25) | | | Growth and phenotype of strains on | | | | | | |-----------|------------------|------------------------------------|----------------|---------------------|-----------------------------|--|--| | Plasmid | Tet
repressor | Glu-
cose | Galac-
tose | Galactose
+ IPTG | Galactose +
tetracycline | | | | pWH414 | _ | +b | _ | +/-b | _ | | | | pWH414 | + | +w | +w | +w | _ | | | | pWH414-2A | _ | +b | _ | +/-b | _ | | | | pWH414-2A | + | +b | _ | +/-b
+/-b | _ | | | Strains of *E. coli* WH207(λ WH25) with the indicated plasmids were streaked on minimal plates containing the indicated carbon source and inducer, as well as ampicillin, kanamycin and X-Gal. Plates were incubated at 30° for 3 days and scored for colony growth and color. Abbreviations used are "+" large single colonies, "+/-" small single colonies, "-" no single colonies but very thin bacterial film visible, "w" white colonies and "b" blue colonies. The presence of Tet repressor is indicated by "+" (pRT240), whereas the absence is indicated by "-" (pWH1200). The final concentrations of inducers were 10^{-3} M for IPTG and 0.5 μ g/ml (corresponding to subinhibitory amounts) for tetracycline. can be partially alleviated by addition of isopropyl thiogalactoside (IPTG) (line 1, galactose + IPTG); complete derepression is probably not achieved because Lac repressor is present in such a high amount that it is never fully induced at the IPTG concentration used (10⁻³ M). We have analyzed the selection system with an operator constitutive mutation to demonstrate the necessity of functional *tet* operators for the observed regulation. For this purpose pWH414–2A was used instead of pWH414 which differs from the latter by a total of 4-bp exchanges in the *tet* operators. MEIER, WRAY and HILLEN (1988) have shown that these mutations reduce binding of Tet repressor by about A. Wissmann et al. three orders of magnitude. The phenotypes in the presence and absence of wild-type Tet repressor are as anticipated (see Table 1, lines 3 and 4). Growth on glucose yields $lacZ^+$ phenotypes while growth on galactose does not occur irrespective of the presence of Tet repressor. In the presence of galactose and IPTG this strain grows and is $lacZ^+$ (see above). For a quantitative determination of the selection efficiency, mixtures of strains were grown on selective plates. These contained cells with the components shown in Figure 2, and an excess of cells in which either the repressor encoding plasmid pRT240 was replaced by the vector without tetR, or the wild type operators (pWH414) were replaced by their constitutive mutants (pWH414-2A). The results demonstrate that 30 cells with wild-type Tet repressor and tet operator can be efficiently selected on a single plate among 108 cells with either no Tet repressor or the tet operator mutation. No white colonies indicating repression of lacZ by Tet repressor are selected as false positives from 108 cells. The appearance of a few blue colonies might be due to spontaneous mutations of the lacl gene. It is the advantage of the divergent tet regulatory region that these candidates can be easily identified and discarded. Temperature-sensitive Tet repressor mutants: Temperature-sensitive Tet repressor mutations were selected by their ability to confer growth on lactose at 42° and growth on galactose at 28° in appropriate E. coli strains (see MATERIALS AND METHODS). Seven parallel selections using individual preparations of pRT240 from the E. coli mutator strain KD1067 (DEGNEN and Cox 1974) were carried through. Five of these selections yielded colonies which were blue at 42° and white at 28° with frequencies ranging from 2 to 85%. The tetR genes from one candidate of each of the seven selections were sequenced. The obtained mutations are displayed in Figure 3. Temperature-sensitive Tet repressor mutants contained either a glycine to glutamic acid exchange at position 21 (GE21) or an an isoleucine to asparagine exchange at position 193 (IN193). The latter was independently selected four times. Another mutant (see Figure 3) isolated by a different approach contains an alanine to aspartic acid exchange at position 89 (AD89) and was included in the further *in vivo* analyses. The two mutants without a temperature sensitive phenotype were identical and had a C-terminal deletion ($\Delta 141$). The wild-type and mutant *tetR* genes were recloned resulting in two sets of plasmids directing either "high" or "low" level expression of *tetR*. The mutants were assayed in vivo for repression of a tetA-lacZ fusion at 28°, 37° and 42°. Furthermore, inducibility by tetracycline and transdominance over wild type was tested. The results are presented in Table 2. Tet repressor mutants GE21, AD89 and IN193 display a clear temperature dependency of lacZ FIGURE 3.—Sequences of mutant Tet repressor proteins obtained from the selection for temperature sensitive variants. The Tet repressor protein with a total length of 207 amino acid residues is represented by a linear bar with both the N- and C-terminal ends indicated. The solid portion defines the potential α -helix-turn- α helix motif, which is thought to be involved in DNA binding (amino acid residues 26 to 47; ISACKSON and BERTRAND 1985). The region of the protein for which mutants have been obtained that are defective for induction by tetracycline is hatched (amino acid residues 64 to 107; SMITH and BERTRAND 1988). Finally, a region of the protein that shows a high degree of variability when sequences of Tet repressor proteins from the five known resistance classes A through E are compared has been marked by crosshatching (amino acid residues 151 to 166; TOVAR, ERNST and HILLEN 1988). The glycine to glutamic acid exchange at position 21 is due to a transition of G to A, the exchange of isoleucine to asparagine at position 193 is the result of a T to A transversion and the deletion of one G in a run of four Gs leads to a frameshift resulting in a C-terminally deleted Tet repressor protein with a total length of 141 residues. Another temperature sensitive mutant which was isolated by a slightly different procedure (mutagenized pRT240 was transformed to E. coli X7029 containing plasmid pWH410 and resulting transformants analysed for their lacZ phenotype on X-Gal plates at 28° and 42°; M. GEISSENDÖRFER and W. HILLEN, unpublished results) was also included in the study. This mutant contains an exchange of alanine to aspartic acid at position 89 as the result of a C to A transversion. repression, as evident from the ratios, whereas mutant Δ141 does not show repression in this system at all. At 28° and a "high" level of tetR expression IN193 shows almost wild-type activity and is clearly more active than AD89. On the contrary at a "low" level of tetR gene expression IN193 is not as effective as wild type and is even less active than AD89. The repression efficiencies encoded by the "high" expression plasmids are 95- and 900-fold higher for AD89 and IN193, respectively, than the ones found in the "low" expression plasmids. AD89 is only partially inducible by tetracycline, whereas the other mutants can be fully induced. GE21 and AD89 are transdominant. Combinatorial mutagenesis at the C terminus of the putative DNA recognition α -helix of Tet repressor: Assuming that Tet repressor contains an α -helixturn- α -helix motif for operator recognition (Postle, NGUYEN and BERTRAND 1984; PABO and SAUER 1984; ISACKSON and BERTRAND 1985), it is very likely that position 46 is part of the α -helix, whereas the secondary structures of residues 47 to 49 remain unclear. To gain information about their possible participation in operator binding a combinatorial cassette mutagenesis (REIDHAAR-OLSON and SAUER 1988) of Tet repressor was performed (see MATERIALS AND METHODS) as shown in Figure 4. Mutant plasmids were transformed to E. coli strains that either do or do not allow selection for tet operator binding of Tet repressor. tetR genes of candidates from both procedures were sequenced in the region of mutagenesis. Thirty-four # Tet Repressor Mutants TABLE 2 In vivo analysis of mutant Tet repressors | | | | Repression | | | | Tetracycline induction | | Transdominance | | | |------------------|-------------------------|------------------|-----------------|--|---------------------------|-----------------|------------------------|-----------------|----------------|-----|--| | Tet
repressor | tetR
expres-
sion | 28° | 37° | Ratio
42° 37°/28° –Tc +Tc –wt TetR +wt TetR | Ratio
+wt TetR/
2.9 | | | | | | | | None | | 100.0 (±2.5) | 100.0 (±3.4) | 100.0 (±5.9) | | 100.0 (±5.1) | 100.0 (±4.5) | 100.0 (±4.1) | 2.9 (±0.1) | 1.0 | | | Wild type | High | $0.0 (\pm 0.0)$ | $0.1 (\pm 0.1)$ | $0.2 (\pm 0.1)$ | 1 | $1.3 (\pm 0.2)$ | 96.7 (±2.8) | 1.1 (±0.0) | 1.1 (±0.0) | 0.4 | | | GE21 | High | 18.4 (±2.1) | 86.2 (±8.2) | $99.3 (\pm 1.2)$ | 4.7 | 48.6 (±2.9) | 104.8 (±4.7) | 94.3 (±1.5) | 18.5 (±1.5) | 6.4 | | | AD89 | High | $0.8 (\pm 0.1)$ | 43.2 (±3.1) | 73.2 (±3.6) | 54.0 | $4.6 (\pm 1.3)$ | 16.6 (±1.1) | 73.4 (±0.2) | 5.7 (±0.3) | 2.0 | | | IN193 | High | $0.1 (\pm 0.1)$ | 20.3 (±1.8) | 69.2 (±1.3) | 20.3 | $1.3 (\pm 0.3)$ | 98.7 (±2.4) | $9.4 (\pm 0.2)$ | 1.6 (±0.0) | 0.6 | | | Δ141 | High | 99.4 (±1.9) | , , | $100.0 (\pm 0.4)$ | 1.1 | , , | , , | 97.2 (±4.5) | 2.5 (±0.2) | 0.9 | | | Wild type | Low | 29.7 (±3.0) | 51.7 (±1.9) | 62.8 (±6.1) | 1.7 | | | | | | | | GE21 | Low | $96.0 (\pm 2.7)$ | 100.1 (±1.1) | $100.8 (\pm 5.9)$ | 1.0 | | | | | | | | AD89 | Low | $76.3 (\pm 0.7)$ | 88.3 (±6.9) | 93.7 (±0.7) | 1.2 | | | | | | | | IN193 | Low | $89.4 (\pm 1.1)$ | 96.1 (±7.8) | 97.4 (±4.1) | 1.1 | | | | | | | β-Galactosidase determinations were performed in E. coli WH207 containing tetA-lacZ fusions and plasmids encoding the given Tet repressors. It is indicated whether the "high" or the "low" expression system for Tet repressor was used (see MATERIALS AND METHODS for details). β-Galactosidase values obtained in strains lacking Tet repressor were defined as 100%. "Repression" was measured using plasmid pWH1012 for the tetA-lacZ fusion. Actual values obtained were 275.8 (±8.7) units at 28°, 386.1 (±11.0) units at 37° and 341.7 (±15.7) units at 42°. Overnight cultures used for the inoculation of log cultures were also grown at the temperatures indicated, except for measurements at 42°, where overnight cultures were grown at 37°. When overnight cultures of strains containing mutants AD89 and IN193 in the "high" in vivo expression system were grown at 28° and log cultures were then grown at 42°, the percentages obtained for AD89 were 37.4% (±3.4%), whereas 2.7% (±0.1%) were obtained for IN193. "Tetracycline induction" was assayed using the prophage λtet50 for the tetA-lacZ fusion. Overnight and log cultures were grown at 28°. Actual values obtained in the absence of Tet repressor without addition of tetracycline were 4970 (±385) units and 4125 (±190) units in the presence of tetracycline. "Transdominance" was also determined using the prophage \(\lambda\) tet50 as a \(\text{tet}\)-lacZ fusion. In addition to the indicated plasmids, cells contained a second compatible plasmid which either was pWH806 (indicated by "-wt TetR") or pWH853 (indicated by "+wt TetR"). Details on both plasmids are given in MATERIALS AND METHODS. Overnight and log cultures were grown at 37°. Percentages are related to the 100% value defined by the strain lacking both wildtype and mutant Tet repressors. Typically, 3895 (±160) units were obtained in the absence of Tet repressor. FIGURE 4.—Cassette mutagenesis of positions 46 to 49 of Tet repressor. The DNA of plasmid pWH1411 (see MATERIALS AND METHODS) is shown as a circle with the tetR gene emphasized by the open box. The origin of replication is depicted as a filled circle, the chloramphenicol acetyltransferase gene is indicated by the shorter arrow and the transcription originating from the bla promoter which leads to constitutive expression of tetR is marked by the longer arrow. The orientation of the tetR gene is indicated by the XbaI site (this restriction site is localized at the 5' end of the gene). At the top of the figure, part of the DNA sequence of the tetR gene is shown together with the respective protein sequence. The localization of the potential DNA recognition α -helix is indicated by the open box below the sequence. Amino acid residues at positions 46 to 49 that were altered are underlined by a black bar. Singular restriction sites used for cloning are indicated above the DNA sequence. different mutants with either single or multiple exchanges at positions 46 to 49 were obtained and analyzed in vivo for repression of a tetA-lacZ fusion at 28° and 37° and for tetracycline induction. All mutants isolated with selection for Tet repressor binding to tet operator give rise to wild-type lacZ repression at 37°. The only exception was a triple mutant which showed a significant derepression of lacZ. At 28°, which was the temperature used for mutant selection, this candidate also displayed wildtype activity. Single amino acid exchanges at positions 46 and 47 had no detectable effect on repressor activity (data not shown). Three of the five mutants at position 48 230 A. Wissmann et al. TABLE 3 Mutational analysis of Tet repressor positions 46 to 49 | | Repr | Induction | | | |---------------|------------------|------------------|---------------|--| | Tet repressor | 28° | 37° | +Tetracycline | | | None | 100.0 (±6.6) | 100.0 (±5.6) | 100.0 (±2.9) | | | Wild type | $1.7 (\pm 0.1)$ | $1.4 (\pm 0.2)$ | 104.7 (±7.4) | | | KR48 | ND | $1.6 (\pm 0.1)$ | ND | | | KQ48 | $5.0 (\pm 0.4)$ | $16.5 (\pm 0.6)$ | 105.7 (±6.2) | | | KH48 | $1.8 (\pm 0.2)$ | $3.6 (\pm 1.0)$ | ND | | | KM48 | ND | $1.5 (\pm 0.1)$ | ND | | | KT48 | $15.8 (\pm 0.6)$ | 45.2 (±5.5) | 106.2 (±2.1) | | | RQ49 | ND | $1.3 (\pm 0.1)$ | 10.3 (±0.3) | | | RG49 | ND | $1.4 (\pm 0.2)$ | ND | | | RP49 | ND | $1.3 (\pm 0.1)$ | 32.4 (±1.8) | | | RW49 | ND | 1.5 (±0.1) | 103.6 (±1.1) | | β -Galactosidase determinations were performed in *E. coli* WH207 (λ tet50) with plasmids encoding the given Tet repressors. Values are given as percentages with regard to the amount of β -galactosidase measured for this strain containing plasmid pMc5-8 under the specific experimental conditions (specified as "none" in the table). Measurements were carried out with strains grown at 28° and 37°, with the respective overnight cultures grown at the same temperatures. Induction with tetracycline was also done at 37° (for details see MATERIALS AND METHODS). showed a lower than wild-type repression activity (Table 3). The mutants at position 49 did not affect repression efficiencies but two candidates displayed only partial inducibility by tetracycline. Multiple amino acid exchanges at positions 46 to 49 influenced the repression activity only if position 48 was altered and the tetracycline inducibility only if position 49 was altered (data not shown). # DISCUSSION # Selection of Tet repressor binding to tet operator: The selection described above is very efficient, because single cells with wild-type Tet repressor binding to wild-type tet operator are found among a vast excess of up to 10^8 cells with either no or reduced binding of Tet repressor to tet operator on one plate. The results with the 2A tet operator mutation show that Tet repressors must have an association constant of greater than 4×10^8 M⁻¹ to tet operator in order to be selectable in this system. Temperature-sensitive Tet repressor mutants: As depicted in Figure 3, GE21 is located in close proximity to the proposed α -helix-turn- α -helix element. It is the weakest DNA binder and shows the strongest transdominant phenotype of all the mutants analysed in this study. This mutant has been isolated previously by ISACKSON and BERTRAND (1985), but the authors did not describe the temperature dependent effect we have observed. We speculate that this mutation may interfere with the positioning of the DNA binding motif. AD89 is located in a region where noninducible mutants have been mapped previously (SMITH and BERTRAND 1988). In agreement with these results it shows only partial induction by tetracycline but also a transdominant phenotype. At the same position SMITH and BERTRAND (1988) have also isolated a mutant (alanine to glycine) which allows only partial induction by tetracycline. Since the residue at position 89 affects both the DNA- and the inducer-binding domain it may be involved in structurally transmitting the signal of inducer binding to the DNA recognition domain. Mutant IN193 is located in the C terminus, to which no function has been assigned so far. It gives rise to the strongest temperature-dependent effect observed in the course of this study. Tetracycline inducibility as far as detectable in our system is not affected and transdominance cannot be observed. When overnight cultures for β -galactosidase determinations were grown at 28° and log cultures were incubated at 42° mutant IN193 retains a much higher efficiency in lacZ repression than AD89 (see footnotes to Table 2). This phenotype corresponds to the tss ("temperature-sensitive synthesis") mutants first described by SADLER and Novick (1965), where the oligomerized protein retains function upon shifting the culture to the nonpermissive temperature. Assembly of new dimers is inhibited at the nonpermissive temperature due to either a defect in folding of the monomer or inhibition of dimer formation (GOLDENBERG 1988). This might indicate that IN193 dimers already formed at 28° are not inactivated upon raising the temperature to 42°. On the contrary, it has been shown in vitro for mutant AD89 that shifting the temperature to 42° clearly inactivates the protein (B. STADE and W. HILLEN, unpublished results). Western blot analyses have shown identical levels of wild type and IN193 when grown at 28° while at 37° no IN193 protein is detectable (C. BERENS and W. HILLEN, manuscript to be published). Taken together with the large increase in repression with concentration (see Table 2) this leads us to speculate that position 193 of Tet repressor might be involved in dimer formation. The C termini of Tet repressor proteins from five resistance classes are rather homologous. They are preceded by a hypervariable region (amino acid residues 151 to 166 of Tn10 Tet repressor; see Figure 3 and Tovar, Ernst and HILLEN 1988) which could indicate a possible Cterminal dimerization domain of Tet repressor. Tet repressor mutants at positions 46 to 49: Several of the Tet repressor mutants at position 48 show reduced DNA binding activity. This suggests that Lys⁴⁸ either directly contacts DNA or that it participates in adjusting the structural conformation of the DNA recognition α -helix. Mutants at position 49 of Tet repressor show wild-type DNA binding, but in some inducibility with tetracycline is reduced. This phenotype can result from three effects: (i) reduced binding of inducer; (ii) interference with the conformational change needed to transmit the signal of inducer binding to the DNA binding domain or (iii) increased affinity for operator resulting in a superrepressor. This effect is not found at the three other positions. The result is particularly surprising, since previously identified mutations in Tet repressor with a noninducible phenotype map between positions 64 and 107 (SMITH and BERTRAND 1988), in a region clearly distinct from the proposed DNA recognition α -helix. The large number of mutants, and a demonstration that some show reduced binding of tetracycline in vitro suggest that this region contains the binding site for tetracycline. Thus, Arg⁴⁹ of Tet repressor might be located at the "DNA side" of the switch mediating inducer binding to the DNA binding site. However, superrepression as a result of additional interactions either stabilizing the repressor-operator or destabilizing repressor-nonoperator complexes (HECHT and SAUER 1985) is also possible. In conclusion, the combinatorial mutagenesis suggests that Lys⁴⁸ may be involved in operator binding and Arg⁴⁹ could be active in induction while no functions can be detected for Lys⁴⁶ and Asn⁴⁷. We thank B. RAK for plasmids, E. coli strains and his advice in strain construction. We also thank L. SMITH for E. coli NK5031(λtet50). We are grateful to G. HOFHAUS for help with some plasmid constructions and A. SERWOTKA for excellent technical assistance. This work was supported by the Humboldt Stiftung (L.V.W.), the Deutsche Forschungsgemeinschaft and the Fonds der chemischen Industrie. ### LITERATURE CITED - ALTSCHMIED, L., R. BAUMEISTER, K. PFLEIDERER and W. HILLEN, 1988 A threonine to alanine exchange at position 40 of Tet repressor alters the recognition of the sixth base pair of tet operator from GC to AT. EMBO J. 7: 4011-4017. - BECK, C. F., R. MUTZEL, J. BARBÉ and W. MÜLLER, 1982 A multifunctional gene (tetR) controls Tn10-encoded tetracycline resistance. J. Bacteriol. 150: 633-642. - Beckwith, J. R., and E. R. Signer, 1966 Transposition of the *lac* region of *Escherichia coli*. I. Inversion of the *lac* operon and transduction of *lac* by φ80. J. Mol. Biol. **19:** 254–265. - Bertrand, K. P., K. Postle, L. V. Wray, Jr., and W. S. Reznikoff, 1983 Overlapping divergent promoters control expression of Tn10 tetracycline resistance. Gene 23: 149–156. - Bertrand, K. P., K. Postle, L. V. Wray, Jr., and W. S. Rezni-KOFF, 1984 Construction of a single-copy promoter vector and its use in analysis of regulation of the transposon Tn10 tetracycline resistance determinant. J. Bacteriol. 158: 910–919. - CASADABAN, M. J., J. CHOU and S. N. COHEN, 1980 In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J. Bacteriol. 143: 971–980. - CHANG, A. C. Y., and S. N. COHEN, 1978 Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134: 1141–1156 - Degnen, G. E., and E. C. Cox, 1974 Conditional mutator gene in *Escherichia coli*: isolation, mapping and effector studies. J. - Bacteriol. 117: 477-487. - ELLEDGE, S. E., P. SUGIONO, L. GUARENTE and R. W. DAVIS, 1989 Genetic selection for genes encoding sequence-specific DNA-binding proteins. Proc. Natl. Acad. Sci. USA **86**: 3689– 3693 - FOSTER, T. J., T. G. B. Howe and K. M. V. RICHMOND, 1975 Translocation of the tetracycline resistance determinant from R100-1 to the *Escherichia coli* K-12 chromosome. J. Bacteriol. **124**: 1153-1158. - GOLDENBERG, D. P.,1988 Genetic studies of protein stability and mechanisms of folding. Annu. Rev. Biophys. Biophys. Chem. 17: 481-507. - HATTORI, M., and Y. SAKAKI, 1986 Dideoxy sequencing method using denatured plasmid templates. Anal. Biochem. 152: 232-238 - HECHT, M. H., and R. T. SAUER, 1985 Phage lambda repressor revertants. Amino acid substitutions that restore activity to mutant proteins. J. Mol. Biol. 186: 53-63. - HILL, D. E., 1989 Mutagenesis with degenerate oligonucleotides: creating numerous mutations in a small DNA sequence, pp. 8.2.1–8.2.7 in Current Protocols in Molecular Biology, Vol. 1, edited by F. M. AUSUBEL, R. BRENT, R. E. KINGSTON, D. D. MOORE, J. G. SEIDMAN, J. A. SMITH and K. STRUHL. John Wiley & Sons, New York. - HILLEN, W., K. SCHOLLMEIER and C. GATZ, 1984 Control of expression of the Tn10-encoded tetracycline resistance operon. II. Interaction of RNA polymerase and TET repressor with the *tet* operon regulatory region. J. Mol. Biol. 172: 185–201. - HILLEN, W., C. GATZ, L. ALTSCHMIED, K. SCHOLLMEIER and I. MEIER, 1983 Control of expression of the Tn10-encoded tetracycline resistance genes. I. Equilibrium and kinetic investigations of the regulatory reactions. J. Mol. Biol. 169: 707– 721. - IPPEN, K., J. A. SHAPIRO and J. R. BECKWITH, 1971 Transposition of the *lac* region to the *gal* region of the *Escherichia coli* chromosome: isolation of λ*lac* transducing bacteriophages. J. Bacteriol. **108**: 5–9. - ISACKSON, P. J., and K. P. BERTRAND, 1985 Dominant negative mutations in the Tn10 tet repressor: evidence for use of the conserved helix-turn-helix motif in DNA binding. Proc. Natl. Acad. Sci. USA 82: 6226–6230. - KLECKNER, N., R. K. CHAN, B.-K. TYE and D. BOTSTEIN, 1975 Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J. Mol. Biol. 97: 561-575. - MANIATIS, T., E. F. FRITSCH and J. SAMBROOK, 1982 Molcular Cloning-A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. - McKenney, K., H. Shimatake, D. Court, U. Schmeissner, C. Brady and M. Rosenberg, 1981 Gene amplification and analysis, p. 383–415 in *Structural Analysis of Nucleic Acids*, edited by J. G. Chirikjian and T. S. Papas. Elsevier/North-Holland, New York. - MEIER, I., L. V. WRAY and W. HILLEN, 1988 Differential regulation of the Tn10-encoded tetracycline resistance genes tetA and tetR by the tandem tet operators O₁ and O₂. EMBO J. 7: 567–572. - MILLER, J. H., 1972 Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. - MILLER, J. H., D. GANEM, P. LU and A. SCHMITZ, 1977 Genetic studies of the Lac repressor. I. Correlation of mutational sites with specific amino acid residues: construction of a colinear gene-protein map. J. Mol. Biol. 109: 275-301. - MÜLLER-HILL, B., L. CRAPO and W. GILBERT, 1968 Mutants that make more *lac* repressor. Proc. Natl. Acad. Sci. USA **59**: 1259–1264. - Pabo, C. O., and R. T. Sauer, 1984 Protein-DNA recognition. Annu. Rev. Biochem. 53: 293-321. - POSTLE, K., T. T. NGUYEN and K. P. BERTRAND, 1984 Nucleotide - sequence of the repressor gene of the Tn10 tetracycline resistance determinant. Nucleic Acids Res. 12: 4849–4863. - REIDHAAR-OLSON, J. F., and R. T. SAUER, 1988 Combinatorial cassette mutagenesis as a probe of the informational content of protein sequences. Science 241: 53-57. - RÜTHER, U., 1982 pUR250 allows rapid chemical sequencing of both DNA strands of its inserts. Nucleic Acids Res. 10: 5765– 5772. - SADLER, J. R., and A. NOVICK, 1965 The properties of repressor and the kinetics of its action. J. Mol. Biol. 12: 305-327. - SADLER, J. R., H. SASMOR and J. L. BETZ, 1983 A perfectly symmetric lac operator binds the lac repressor very tightly. Proc. Natl. Acad. Sci. USA 80: 6785–6789. - SANGER, F., S. NICKLEN and A. R. COULSON, 1977 DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467. - SIZEMORE, C., A. WISSMANN, U. GÜLLAND and W. HILLEN, 1990 Quantitative analysis of Tn 10 Tet repressor binding to a complete set of tet operator mutants. Nucleic Acids Res. 18: 2875–2880. - SMITH, L. D., and K. P. BERTRAND, 1988 Mutations in the Tn10 tet repressor that interfere with induction; location of the tetracycline-binding domain. J. Mol. Biol. 203: 949-959. - STANSSENS, P., C. OPSOMER, Y. M. MCKEOWN, W. KRAMER, M. - ZABEAU and H.-J. FRITZ, 1989 Efficient oligonucleotide-directed construction of mutations in expression vectors by the gapped duplex DNA method using alternating selectable markers. Nucleic Acids Res. 17: 4441–4454. - TOVAR, K., A. ERNST and W. HILLEN, 1988 Identification and nucleotide sequence of the class E *tet* regulatory elements and operator and inducer binding of the encoded purified *tet* repressor. Mol. Gen. Genet. **215**: 76–80. - WILSON, G. G., K. K. Y. YOUNG, G. J. EDLIN and W. KONIGSBERG, 1979 High-frequency generalised transduction by bacteriophage T4. Nature 280: 80–82. - WISSMANN, A., and W. HILLEN, 1989 Tetracyclin-Resistenzdeterminanten: Mechanismen der Resistenz und Regulation ihrer Expression. Forum Mikrobiol. 12: 292–299. - WRAY, L. V., JR., and W. S. REZNIKOFF, 1983 Identification of repressor binding sites controlling expression of tetracycline resistance encoded by Tn10. J. Bacteriol. 156: 1188–1191. - YANISCH-PERRON, C., J. VIEIRA and J. MESSING, 1985 Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119. - Yu, X. M., and W. S. REZNIKOFF, 1984 Deletion analysis of the CAP-cAMP binding site of the *E. coli* lactose promoter. Nucleic Acids Res. 12: 5449-5464. Communicating editor: N. KLECKNER