Skip to main content
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org
  • Log in
Genetics

Main menu

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • Centennial
    • Genetics of Immunity
    • Genetics of Sex
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org

User menu

  • Log out

Search

  • Advanced search
Genetics

Advanced Search

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • Centennial
    • Genetics of Immunity
    • Genetics of Sex
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
Previous ArticleNext Article

Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.

F Tajima
Genetics November 1, 1989 vol. 123 no. 3 585-595
F Tajima
Department of Biology, Kyushu University, Fukuoka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
Loading

Abstract

The relationship between the two estimates of genetic variation at the DNA level, namely the number of segregating sites and the average number of nucleotide differences estimated from pairwise comparison, is investigated. It is found that the correlation between these two estimates is large when the sample size is small, and decreases slowly as the sample size increases. Using the relationship obtained, a statistical method for testing the neutral mutation hypothesis is developed. This method needs only the data of DNA polymorphism, namely the genetic variation within population at the DNA level. A simple method of computer simulation, that was used in order to obtain the distribution of a new statistic developed, is also presented. Applying this statistical method to the five regions of DNA sequences in Drosophila melanogaster, it is found that large insertion/deletion (greater than 100 bp) is deleterious. It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

  • Copyright © 1989 by the Genetics Society of America
Previous ArticleNext Article
Back to top

PUBLICATION INFORMATION

Volume 123 Issue 3, November 1989

ARTICLE CLASSIFICATION

INVESTIGATIONS
Email

Thank you for sharing this Genetics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
(Your Name) has forwarded a page to you from Genetics
(Your Name) thought you would be interested in this article in Genetics.
Alerts
Enter your email below to set up alert notifications for new article, or to manage your existing alerts.
SIGN UP OR SIGN IN WITH YOUR EMAIL
View PDF
Share

Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.

F Tajima
Genetics November 1, 1989 vol. 123 no. 3 585-595
F Tajima
Department of Biology, Kyushu University, Fukuoka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation

Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.

F Tajima
Genetics November 1, 1989 vol. 123 no. 3 585-595
F Tajima
Department of Biology, Kyushu University, Fukuoka, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Related Articles

Cited By

More in this TOC Section

  • Cell Specificity of Human Regulatory Annotations and Their Genetic Effects on Gene Expression
  • Dynein Light Chain DLC-1 Facilitates the Function of the Germline Cell Fate Regulator GLD-1 in Caenorhabditis elegans
  • The Caenorhabditis elegans SMOC-1 Protein Acts Cell Nonautonomously To Promote Bone Morphogenetic Protein Signaling
Show more Investigations
  • Top
  • Article
  • Info & Metrics

GSA

The Genetics Society of America (GSA), founded in 1931, is the professional membership organization for scientific researchers and educators in the field of genetics. Our members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level.

Online ISSN: 1943-2631

  • For Authors
  • For Reviewers
  • For Subscribers
  • Submit a Manuscript
  • Editorial Board
  • Press Releases

SPPA Logo

GET CONNECTED

RSS  Subscribe with RSS.

email  Subscribe via email. Sign up to receive alert notifications of new articles.

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus

Copyright © 2019 by the Genetics Society of America

  • About GENETICS
  • Terms of use
  • Advertising
  • Permissions
  • Contact us
  • International access