ABSTRACT

Genetic mapping studies had shown that the bacterial transposon Tn5 can insert into many sites in a gene, but that some sites are preferred. To begin understanding Tn5's insertion specificity at the molecular level, we selected transpositions of Tn5 from the Escherichia coli chromosome to the plasmid pBR322 and analyzed the resultant pBR322::Tn5 plasmids by restriction endonuclease digestion and DNA sequencing. Seventy-five insertions in the tet gene were found at 28 sites including one major hotspot (with 21 insertions) and four lesser hotspots (with four to ten insertions each). All five hotspots are within the first 300 of the 1250-base pair (bp) tet gene. In contrast, 31 independent insertions in the amp gene were found in at least 27 distinct sites.—Tn5 generates 9 bp target sequence duplications when it transposes. Such transposon-induced duplications are generally taken to indicate that cleavages of complementary target DNA strands are made 9 bp apart during transposition. DNA sequence analysis indicated that GC base pairs occupy positions 1 and 9 in the duplications at each of the five hotspots examined, suggesting a GC-cutting preference during Tn5 transposition.

  • Received July 5, 1983.
  • Accepted August 20, 1983.